The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key reactions in energy-converting systems, such as fuel cells (FCs) and water-splitting (WS) devices. However, the current use of expensive Pt-based electrocatalysts for ORR and IrO2 and RuO2 for OER is still a major drawback for the economic viability of these clean energy technologies. Thus, there is an incessant search for low-cost and efficient electrocatalysts (ECs). Hence, herein, we report the preparation, characterization (Raman, XPS, and SEM), and application of four composites based on doped-carbon materials (CM) and cobalt phosphotungstate (MWCNT_N8_Co4, GF_N8_Co4, GF_ND8_Co4, and GF_NS8_Co4) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Structural characterization confirmed the successful carbon materials doping with N and/or N, S, and the incorporation of the cobalt phosphotungstate. Overall, all composites showed good ORR performance with onset potentials ranging from 0.83 to 0.85 V vs. RHE, excellent tolerance to methanol crossover with current retentions between 88 and 90%, and good stability after 20,000 s at E = 0.55 V vs. RHE (73% to 82% of initial current). In addition, the number of electrons transferred per O2 molecule was close to four, suggesting selectivity to the direct process. Moreover, these composites also presented excellent OER performance with GF_N8_Co4 showing an overpotential of 0.34 V vs. RHE (for j = 10 mA cm−2) and jmax close to 70 mA cm−2. More importantly, this electrocatalyst outperformed state-of-the-art IrO2 electrocatalyst. Thus, this work represents a step forward toward bifunctional electrocatalysts using less expensive materials.
The smart choice of polyoxometalates (POMs) and the design of POM@carbon-based composites are promising tools for producing active electrocatalysts for both the oxygen reduction (ORR) and the oxygen evolution reactions (OER). Hence, herein, we report the preparation, characterization and application of three composites based on doped, multi-walled carbon nanotubes (MWCNT_N6) and three different POMs (Na12[(FeOH2)2Fe2(As2W15O56)2]·54H2O, Na12[(NiOH2)2Ni2(As2W15O56)2]·54H2O and Na14[(FeOH2)2Ni2(As2W15O56)2]·55H2O) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Overall, the three POM@MWCNT_N6 composites showed good ORR performance with onset potentials between 0.80 and 0.81 V vs. RHE and diffusion-limiting current densities ranging from −3.19 to −3.66 mA cm−2. Fe4@MWCNT_N6 and Fe2Ni2@MWCNT_N6 also showed good stability after 12 h (84% and 80% of initial current). The number of electrons transferred per O2 molecule was close to three, suggesting a mixed regime. Moreover, the Fe2Ni2@MWCNT_N6 presented remarkable OER performance with an overpotential of 0.36 V vs. RHE (for j = 10 mA cm−2), a jmax close to 135 mA cm−2 and fast kinetics with a Tafel slope of 45 mV dec−1. More importantly, this electrocatalyst outperformed not only most POM@carbon-based composites reported so far but also the state-of-the-art RuO2 electrocatalyst. Thus, this work represents a step forward towards bifunctional electrocatalysts using less expensive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.