Targeted uptake of therapeutic nanoparticles in a cell-, tissue-, or disease-specific manner represents a potentially powerful technology. Using prostate cancer as a model, we report docetaxel (Dtxl)-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine RNA aptamers that recognize the extracellular domain of the prostate-specific membrane antigen (PSMA), a well characterized antigen expressed on the surface of prostate cancer cells. These Dtxl-encapsulated nanoparticleaptamer bioconjugates (Dtxl-NP-Apt) bind to the PSMA protein expressed on the surface of LNCaP prostate epithelial cells and get taken up by these cells resulting in significantly enhanced in vitro cellular toxicity as compared with nontargeted nanoparticles that lack the PSMA aptamer (Dtxl-NP) (P < 0.0004). The Dtxl-NP-Apt bioconjugates also exhibit remarkable efficacy and reduced toxicity as measured by mean body weight loss (BWL) in vivo [body weight loss of 7.7 ؎ 4% vs. 18 ؎ 5% for Dtxl-NP-Apt vs. Dtxl-NP at nadir, respectively (mean ؎ SD); n ؍ 7]. After a single intratumoral injection of Dtxl-NP-Apt bioconjugates, complete tumor reduction was observed in five of seven LNCaP xenograft nude mice (initial tumor volume of Ϸ300 mm 3 ), and 100% of these animals survived our 109-day study. In contrast, two of seven mice in the Dtxl-NP group had complete tumor reduction with 109-day survivability of only 57%. Dtxl alone had a survivability of only 14%. Saline and nanoparticles without drug were similarly nonefficacious. This report demonstrates the potential utility of nanoparticle-aptamer bioconjugates for a therapeutic application.docetaxel ͉ prostate cancer ͉ targeted delivery ͉ prostate-specific membrane antigen ͉ poly(D,L-lactic-co-glycolic acid) (PLGA)
Nanoparticle (NP) size has been shown to significantly affect the biodistribution of targeted and non-targeted NPs in an organ specific manner. Herein we have developed NPs from carboxy-terminated poly(d,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) polymer and studied the effects of altering the following formulation parameters on the size of NPs: (1) polymer concentration, (2) drug loading, (3) water miscibility of solvent, and (4) the ratio of water to solvent. We found that NP mean volumetric size correlates linearly with polymer concentration for NPs between 70 and 250 nm in diameter (linear coefficient=0.99 for NPs formulated with solvents studied). NPs with desirable size, drug loading, and polydispersity were conjugated to the A10 RNA aptamer (Apt) that binds to the prostate specific membrane antigen (PSMA), and NP and NP-Apt biodistribution was evaluated in a LNCaP (PSMA+) xenograft mouse model of prostate cancer. The surface functionalization of NPs with the A10 PSMA Apt significantly enhanced delivery of NPs to tumors vs. equivalent NPs lacking the A10 PSMA Apt (a 3.77-fold increase at 24h; NP-Apt 0.83%+/-0.21% vs. NP 0.22%+/-0.07% of injected dose per gram of tissue; mean+/-SD, n=4, p=0.002). The ability to control NP size together with targeted delivery may result in favorable biodistribution and development of clinically relevant targeted therapies.
A substantially improved hypoglycemic effect was observed in mice that were orally administered with insulin-magnetite-PLGA microparticles in the presence of an external magnetic field, suggesting that magnetic force can be used to improve the efficiency of orally delivered protein therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.