Understanding how acting bridges the emotional bond between spectators and films is essential to depict how humans interact with this rapidly growing digital medium. In recent decades, the research community made promising progress in developing facial expression recognition (FER) methods. However, no emphasis has been put in cinematographic content, which is complex by nature due to the visual techniques used to convey the desired emotions. Our work represents a step towards emotion identification in cinema through facial expressions’ analysis. We presented a comprehensive overview of the most relevant datasets used for FER, highlighting problems caused by their heterogeneity and to the inexistence of a universal model of emotions. Built upon this understanding, we evaluated these datasets with a standard image classification models to analyze the feasibility of using facial expressions to determine the emotional charge of a film. To cope with the problem of lack of datasets for the scope under analysis, we demonstrated the feasibility of using a generic dataset for the training process and propose a new way to look at emotions by creating clusters of emotions based on the evidence obtained in the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.