Machine learning models are widely adopted in scenarios that directly affect people. The development of software systems based on these models raises societal and legal concerns, as their decisions may lead to the unfair treatment of individuals based on attributes like race or gender. Data preparation is key in any machine learning pipeline, but its effect on fairness is yet to be studied in detail. In this paper, we evaluate how the fairness and effectiveness of the learned models are affected by the removal of the sensitive attribute, the encoding of the categorical attributes, and instance selection methods (including cross-validators and random undersampling). We used the Adult Income and the German Credit Data datasets, which are widely studied and known to have fairness concerns. We applied each data preparation technique individually to analyse the difference in predictive performance and fairness, using statistical parity difference, disparate impact, and the normalised prejudice index. The results show that fairness is affected by transformations made to the training data, particularly in imbalanced datasets. Removing the sensitive attribute is insufficient to eliminate all the unfairness in the predictions, as expected, but it is key to achieve fairer models. Additionally, the standard random undersampling with respect to the true labels is sometimes more prejudicial than performing no random undersampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.