We observed bacterial or fungal co-infections in COVID-19 patients admitted between March 1 – April 18, 2020 (152/4267, 3.6%). Mortality was 57%; 74% were intubated; 51% with bacteremia had central venous catheters. Time to culture positivity was 6-7 days; 79% received preceding antibiotics. Metallo-beta-lactamase-producing E. cloacae co-infections occurred in 5 patients.
Histoplasmosis, caused by the dimorphic environmental fungus Histoplasma capsulatum, is a major mycosis on the global stage. Acquisition of the fungus by mammalian hosts can be clinically silent or it can lead to life-threatening systemic disease, which can occur in immunologically intact or deficient hosts, albeit severe disease is more likely in the setting of compromised cellular immunity. H. capsulatum yeast cells are highly adapted to the mammalian host as they can effectively survive within intracellular niches in select phagocytic cells. Understanding the biological response by both the host and H. capsulatum will facilitate improved approaches to prevent and/or modify disease. This review presents our current understanding of the major pathogenic mechanisms involved in histoplasmosis.
SummaryPlague, or the Black Death, is a zoonotic disease that is spread from mammal to mammal by fleas. This mode of transmission demands that the causative agent of this disease, Yersinia pestis, is able to survive and multiply in both mammals and insects. In
The COVID-19 pandemic caused by the new SARS-CoV-2 coronavirus has imposed severe challenges on laboratories in their effort to achieve sufficient diagnostic testing capability for identifying infected individuals. In this study we report the analytical and clinical performance characteristics of a new, high-throughput, fully automated nucleic acid amplification test system for the detection of SARS-CoV-2. The assay utilizes target capture, transcription mediated amplification, and acridinium ester-labeled probe chemistry on the automated Panther System to directly amplify and detect two separate target sequences in the ORF1ab region of the SARS-CoV-2 RNA genome. The probit 95% limit of detection of the assay was determined to be 0.004 TCID50/ml using inactivated virus, and 25 c/ml using synthetic in vitro transcript RNA targets. Analytical sensitivity (100% detection) was confirmed to be 83 – 194 c/ml using three commercially available SARS-CoV-2 nucleic acid controls. No cross reactivity or interference was observed with testing six related human coronaviruses, as well as 24 other viral, fungal, and bacterial pathogens, at high titer. Clinical nasopharyngeal swab specimen testing (N=140) showed 100%, 98.7%, and 99.3% positive, negative, and overall agreement, respectively, with a validated reverse transcription PCR NAAT for SARS-CoV-2 RNA. These results provide validation evidence for a sensitive and specific method for pandemic-scale automated molecular diagnostic testing for SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.