Approximations of syntactic and semantic objects play an important role in various fields of mathematics. They can create theories and structures in one given class by means of others, usually simpler. For instance, in certain situations, infinite objects can be approximated by finite or strongly minimal ones. Thus, complicated objects can be collected using simplified ones. Among these objects, Abelian groups, their first order theories, connections and dynamics are of interests. Theories of Abelian groups are characterized by Szmielew invariants leading to the study and descriptions of approximations in terms of these invariants. In the paper we apply a general approach for approximating theories to the class of theories of Abelian groups which characterizes the approximability of a theory of Abelian groups by a given family of theories of Abelian groups in terms of Szmielew invariants and their limits. We describe some forms of approximations for theories of Abelian groups. In particular, approximations of theories of Abelian groups by theories of finite ones are characterized. In addition, we describe approximations by quasi-cyclic and torsion-free Abelian groups and their combinations with respect to given families of prime numbers. Approximations and closures of families of theories with respect to standard Abelian groups for various sets of prime numbers are also described.
We study applications of a general approach for arities and arizabilities of theories to group and monoid theories. It is proved that a theory of a group G is aritizable if and only if G is finite. It is shown that this criterion does not hold for monoids/groupoids: there is an infinite monoid/groupoid having a binary theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.