Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer.
Osteoarthritis (OA) is a multifactorial joint disease and a common disabling condition in the elderly population. The associated pain and pathohistological changes in cartilage are common features of OA in both humans and animal models. Shea nut oil extract (SheaFlex75) contains a high triterpenoid concentration and has demonstrated anti-inflammatory and antiarthritic effects in both human and animal studies. In this study, we aim to investigate the potential of SheaFlex75 to prevent articular cartilage deterioration in a rat model of chronic OA progression. By employing anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx)-induced OA, we found attenuation of both early and chronic onset OA pain and cartilage degeneration in ACLT+MMx rats receiving SheaFlex75 dietary supplementation. Under long-term oral administration, the rats with induced OA presented sustained protection of both pain and OA cartilage integrity compared to the OA-control rats. Moreover, rats subjected to long-term SheaFlex75 ingestion showed normal biochemical profiles (AST, BUN and total cholesterol) and presented relatively lower triglycerides (TGs) and body weights than the OA-control rats, which suggested the safety of prolonged use of this oil extract. Based on the present evidence, preventive management is advised to delay/prevent onset and progression in OA patients. Therefore, we suggest that SheaFlex75 may be an effective management strategy for symptom relief and cartilage protection in patients with both acute and chronic OA.
Tolerance and associated hyperalgesia induced by long-term morphine administration substantially restrict the clinical use of morphine in pain treatment. Melatonin, a neurohormone released by the pineal gland, has been demonstrated to attenuate anti-nociceptive morphine tolerance. The present study investigates differentially expressed genes in the process of morphine tolerance and altered gene expression subsequent to melatonin treatment in chronic morphine-infused ratspinal cords. Morphine tolerance was induced in male Wistar rats by intrathecal morphine infusion (the MO group). Melatonin (the MOMa group) was administered to overcome the effects derived by morphine. The mRNA collected from L5-S3 of the spinal cord was extracted and analysed by rat expression microarray. Principal component analysis and clustering analysis revealed that the overall gene profiles were different in morphine and melatonin treatments. Subsequent to Gene Ontology analysis, the biological processes of differentially expressed genes of MO and MOMa compared with the control group were constructed. Furthermore, a panel of genes exclusively expressed following melatonin treatment and another panel of genes with inverse expression between the MO and MOMa group were also established. Subsequent to PANTHER pathway analysis, a group of genes with inverse expression following melatonin administrated compared with morphine alone were identified. The expression levels of genes of interest were also confirmed using a reverse transcription-quantitative polymerase chain reaction. The gene panel that was constructed suggests a potential signaling pathway in morphine tolerance development and is valuable for investigating the mechanism of morphine tolerance and the regulatory gene profiles of melatonin treatment. These results may contribute to the discovery of potential drug targets in morphine tolerance treatments in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.