ZnS nanoparticles have been synthesized on vertically aligned carbon nanotubes by gas-phase conversion of ZnO nanoparticles which have been tethered on vertically aligned carbon nanotubes using atomic layer deposition (ALD). The resulting ZnO@CNT nanocomposite has been converted to ZnS@CNT by reacting it with hydrogen sulfide using thioacetamide as a precursor. The composition of the resulting nanocomposite could be tuned from a mixed ternary ZnS/ZnO@CNT nanocomposite to a pure ZnS@CNT nanocomposite. At the same time, the amount of wurtzite and sphalerite phases varies in the ZnS@CNT nanocomposite. The resulting nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED), ultraviolet-visible diffuse reflectance spectroscopy (UV-VIS DRS) and photoluminescence spectroscopy (PL). Finally, the different nanocomposites were tested for their photocatalytic activity by the photocatalytic decomposition under visible light using methyl orange (MO). Herein a systematic study of the photocatalytic activity of different compositions of ZnS in the ZnS@CNT nanocomposite was performed for the first time.
Gas phase transformation of ZnO on vertically aligned CNTs (VACNTs) into ZIF-8 particles on VACNTs is achieved by direct reaction with 2-methylimidazole. The composite shows attractive gas adsorption properties over a wide pressure regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.