Erythropoiesis is a tightly regulated process. Development of red blood cells occurs through differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Binding of erythropoietin (Epo) to its receptor (EpoR) is required for erythropoiesis as it promotes survival and late maturation of erythroid progenitors. In vivo and in vitro studies have highlighted the requirement of EpoR signaling through Janus kinase 2 (Jak2) tyrosine kinase and Stat5a/b as a central pathway. Here, we demonstrate that phospholipase C gamma 1 (Plcγ1) is activated downstream of EpoR-Jak2 independently of Stat5. Plcγ1-deficient pro-erythroblasts and erythroid progenitors exhibited strong impairment in differentiation and colony-forming potential. In vivo, suppression of Plcγ1 in immunophenotypically defined HSCs (Lin − Sca1 + KIT + CD48 − CD150 + ) severely reduced erythroid development. To identify Plcγ1 effector molecules involved in regulation of erythroid differentiation, we assessed changes occurring at the global transcriptional and DNA methylation level after inactivation of Plcγ1. The top common downstream effector was H2afy2, which encodes for the histone variant macroH2A2 (mH2A2). Inactivation of mH2A2 expression recapitulated the effects of Plcγ1 depletion on erythroid maturation. Taken together, our findings identify Plcγ1 and its downstream target mH2A2, as a 'non-canonical' Epo signaling pathway essential for erythroid differentiation.
Erythropoiesis is a multi-step process in which the development of red blood cells occurs through expansion and differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Erythropoietin (Epo) is strictly required for erythropoiesis as it promotes survival and late maturation. In vivo and in vitro studies have pointed out the major role of erythropoietin receptor (EpoR) signalling through JAK2 tyrosine-kinase and STAT5a/b as a central regulator of erythropoiesis. STAT5a/b is essential in regulating early erythroblast survival, however, with regard to differentiation of erythroid progenitors current data are not definitive in establishing a critical, non-redundant role. Phospholipase C gamma 1 (PLCγ1) is known to act as key mediator of calcium-signalling that can substitute for PI3K/AKT in oncogenic models. Interestingly, genetic deletion of murine PLCγ1 in embryonic development using a conventional knockout mouse model resulted in lethality at E9.0 due to generalized growth failure and there was absence of erythrogenesis and vasculogenesis. Here, we revisited the role of Plcγ1 and investigated its function in signalling, differentiation and transcriptomic/epigenetic regulation of erythropoiesis: Upon Epo stimulation, we were able to demonstrate that Plcγ1 is a downstream target of EpoR/Jak2 signalling in lymphoid (Ba/F3) and myeloid (32D) progenitor cell lines (both transfected with EpoR and Jak2-WT) and in a erythroid progenitor (I/11) cell line. In order to specifically assess its role in erythroid development downstream of the EpoR-Jak2 axis, we focused on the murine pro-erythroblast cell line I/11 which is able to differentiate upon dexamethasone-/stem cell factor-withdrawal combined with erythropoietin stimulation. Interestingly, knockdown of Plcγ1 led to a dramatic delay (scr CD44high 21% vs. Plcγ1 shRNA CD44high 64%, p=0.02) in erythroid differentiation and accumulation of immature erythroid progenitors as assessed by flow cytometry technology. Knockdown of Plcγ1 did alter neither proliferation of cells nor the cell cycle distribution and activation of other EpoR downstream molecules as Stat5, Mek and Akt was not impaired. In addition, we analysed the colony-forming potential of Plcγ1-deficient I/11 and fetal liver cells (FLC) compared to controls. Colony formation was dramatically impaired in both - I/11 (scr 138 vs. Plcγ1 shRNA 32, p=0.03) and primary FLC (scr 107 vs. Plcγ1 shRNA 28, p<0.001) - when compared to control cells. Flow cytometry analysis of the colonies revealed a higher amount of immature populations (CD44high, KIT+) in PLCγ1-deficient cells as compared to controls whereas the content of TER119+ cells, reflecting more mature erythroid cells, was higher in controls. To elucidate on the mechanism of Plcγ1-mediated regulation of erythroid development, we performed global gene expression analysis in I/11 cells at various time points of differentiation after knockdown of Plcγ1. Several of the genes that change expression in the absence of Plcγ1 can be classified as transcription/co-transcription factors, epigenetic regulators, metabolic factors or adaptor molecules involved in intracellular signaling. Thus, Plcγ1-deficient cells showed up-regulation of the transcription factor RUNX1 and the adaptor molecule GRAP2 over time compared to controls whereas the epigenetic regulator H2AFY2 was significantly decreased. Stimulated by our observation that profound changes in global gene expression also included the epigenetic machinery (H2afy2), we speculated whether Plcγ1 signalling also modifies the global epigenetic landscape of I/11 pro-erythroblasts. Therefore, we performed genome-wide DNA methylome analysis in I/11 cells upon Plcγ1 knockdown using MCIP-seq (methyl-CpG immunoprecipitation combined with next-generation sequencing). The observed methylation changes were by far dominated by an apparent hypomethylation of differentially methylated regions (DMRs) in Plcγ1 knockdown cells as compared to control cells. In line with this, gene ontology analysis of DMRs revealed a highly significant enrichment of biological terms associated with developmental processes and cell differentiation. Taken together, our findings provide evidence for an essential role of Plcγ1 in regulating erythroid differentiation through alteration of the transcriptomic and epigenetic landscape. Disclosures: No relevant conflicts of interest to declare.
4744 Erythropoiesis is a complex multistage process in which the development of red blood cells occurs through expansion and differentiation of hematopoietic stem cells (HSCs) into more committed progenitors. Regulation of survival, expansion and differentiation of erythroid progenitors is dependent on a well-coordinated cohort of transcription factors and an intricate network of finely tuned regulatory signalling pathways. In vivo and in vitro studies have highlighted erythropoietin receptor (EpoR) signaling through JAK2 tyrosine kinase as a crucial regulator of erythropoiesis. This leads to the subsequent activation of downstream effectors such as STAT5, MAPK, and PI-3K/Akt pathways. However, detailed knowledge about signalling pathways involved in EPO/EpoR induced differentiation of erythroid progenitors remain elusive. Phosphatidylinositol-specific phospholipase C gamma1 (PLCg1) is known to act as key mediator of calcium-signalling that can substitute for PI-3K/AKT signalling in oncogenic models. Moreover, its loss is associated with lack of erythropoiesis in a straight knockout mouse model. As it is tempting to speculate on the role of Plcg1/Ca-signalling downstream of EpoR/JAK in regulation of erythroid development we aimed to investigate its influence on differentiation and proliferation of hematopoietic cells in vitro and in vivo. Using different cellular models (Ba/F3, 32D) stably transfected with EpoR and wildtype JAK2 we could provide evidence that PLCg1 is a downstream target of EpoR/JAK2 signalling. Knockdown of PLCg1 led to a decreased proliferation of PLCg1-deficient cells compared to control cells whereas survival of these cells was not affected. In contrast, other downstream targets of EpoR signalling were not affected by PLCg1 knockdown. In order to assess specifically its role in erythroid development, we used the murine pro-erythroblast cell line I-11 as well as primary fetal liver cells (FLC). The I-11 cell line was isolated from p53-deficient fetal livers and is able to differentiate upon dexamethasone-/stem cell factor-withdrawal combined with erythropoietin stimulation; primary FLC were harvested at E13.5. PLCg1 knockdown by using RNA-interference technology led to a significant delay in erythroid differentiation and accumulation of immature erythroid progenitors (e.g. pro-erythroblasts) as assessed by cytology and flow cytometry technology. In addition, we tested the colony-forming potential of PLCg1-deficient I-11 and fetal liver cells compared to controls. Colony formation was significantly impaired in both - I-11 and primary FLC - when compared to control cells (shRNA-scr). We performed gene-expression analysis by Q-RT-PCR on sorted hematopoietic stem and progenitor cells and found a higher expression in MEP compared to GMP or CMP. To clarify, whether the effects of Plcg1 knockdown are restricted to erythroid development at the stage of MEP or erythroid progenitors, we aimed to investigate adult hematopoietic stem cells in erythroid development. We infected lineage-depleted/erythroid-enriched (Gr1-, B220-, CD3/4/8, CD19-/ IL7Ra- negative) bone marrow cells with either PLCg1 or control shRNA. Using flow cytometry analysis to examine differentiation we could observe a reduction of megakaryocyte/erythroid progenitor cells (MEP) in PLCg1 knockdown cells compared to control cells while development of other lineages (e.g. GMP) remained unaffected. Currently, competitive repopulation assays investigating the repopulation and differentiation capacity of hematopoietic stem cells after Plcg1 knockdown (or scr controls) are under way to explore the role of Plcg1 signalling in hematopoietic and erythroid development in vivo. Taken together, our findings presume PLCg1 to be a key regulator in erythroid development and understanding of its relevance in development and maintenance of normal hematopoiesis will be a crucial prerequisite for targeting this important pathway in myeloproliferative disease. Disclosures: No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.