Although the number of new tuberculosis (TB) cases registered per year has decreased by 3-fold between 2001 and 2017 in Latvia, the TB incidence and rates of multidrug resistant TB in this Baltic country remain substantially higher than in most other European countries. Molecular typing methods of Mycobacterium tuberculosis (MTB) play an important role both in clinical studies of the disease and the epidemiological investigations, allowing to describe and characterize the pathogen's population structure and spread of particular genotypes. Aim of this study was to examine the prevalence of MTB lineages in Riga and Riga region of Latvia within a five-year period (2008 -2012), and to evaluate the discriminatory power (DP) of spoligotyping, standard 24locus MIRU-VNTR and IS6110-RFLP methods in this setting. The results showed that the main MTB spoligotype families were Beijing (25.3%) and LAM (24.3%), followed by T (22.1%), Ural (11.2%), Haarlem (6.6%) and X superfamily (3.4%). This distribution remained stable over the five consecutive years. 67.6% of MTB isolates were pan-susceptible, and 32.4% were resistant to any drug; multi-drug resistance was found in 5.8% of MTB strains, and 7.6% of MTB isolates were extensively drugresistant. Drug resistance was associated with SIT1, SIT283 and SIT42 genotypes, while SIT1 and SIT42 were overrepresented among multi drugresistant MTB strains. Overall, DP of spoligotyping method alone was 0.8953, while DP of both 24-locus MIRU-VNTR analysis and IS6110 RFLP was higher (DP=0.9846 and 0.9927, respectively), mainly due to the improvement of the resolution for the Beijing strains. In conclusion, this work represents the first comprehensive molecular epidemiological description of TB in Latvia, highlighting the high genetic diversity of MTB strains circulating in Riga and Riga region. In combination with detailed epidemiological data this approach was helpful for the in-depth understanding of epidemiological processes in settings where the Next-Gen sequencing is not available as a routine method.
Endogenous reactivation and exogenous reinfection are two possible causes of recurrent tuberculosis (TB). However, in some cases, precise cause determination can be challenging. In this study, we used whole genome sequencing to determine pairwise SNV distances and detect differing SNVs in initial and subsequent isolates for recurrent TB cases when the first and second episodes were caused by Mycobacterium tuberculosis (Mtb) strains with an identical spoligotype pattern. In total, 104 Mtb isolates from 36 recurrent TB and 16 single TB episode patients were included in the study. Most isolate pairs belonged to the SIT1 (n=21), SIT42 (n=9), SIT53 (n=9), and SIT254 (n=7) spoligotypes, and in 27 cases, resistance to at least one anti-TB drug was found in either isolate. Drug susceptibility was more common in the recurrent TB patient cohort, and longitudinal single TB episode isolates were more prone to be drug-resistant (p=0.03), while the association between patient cohort and spoligotype was not statistically significant (p=0.07). The pairwise SNV-distance between the longitudinal single TB episode isolates was small (0-7 SNVs). Among the recurrent TB isolates, based on the high SNV-distance (38–273 SNVs), six reinfection cases (16.7%) were identified. This distance was small (<10 SNVs) in the remaining 30 isolate pairs. Further analysis of differing SNVs revealed that 22 (61.1%) cases could be classified as possible reactivation. Notably, despite the small distance of 2–7 SNVs, initial isolates of eight patients (22.2%) had several SNVs that were not found in the second isolates; therefore, these cases were classified as reinfection with a closely related Mtb strain. No statistically significant difference in the time interval between specimen collection in the reactivation and reinfection Mtb sample groups (p=0.13) or an association between recurrence cause and drug resistance status (p=0.62) or spoligotype (p=0.79) could be detected. The mycobacterial median mutation rate of longitudinal single TB episodes and possible reactivation isolate pairs (n=37) was 0.12 SNVs/genome/year (IQR 0-0.39), and in 18 cases (48.6%), it was equal to zero. No statistically significant differences in mutation rate were found between recurrent TB and longitudinal single TB episode isolates (p=0.087), drug-susceptible and resistant isolates (p=0.37) or isolates of Beijing and other genotype families (p=0.33). Furthermore, four cases of fluoroquinolone resistance development through the acquired SNVs in the gyrA gene were identified. To conclude, this study highlighted the complexity of recurrent episode cause determination and showed the usefulness of differing SNV identification in both Mtb isolates in such cases. Expected drug susceptibility was the only discriminative factor for recurrent TB episode-causing mycobacterial strains, while no differences between reactivation and reinfection sample groups could be identified.
Introduction:Pharmacogenetics studies provide clinically relevant information on the identified associations between genetic variants and individual variability in drug response, which, in turn, offers great promise for guiding personalized drug therapy and clinical trial design. However, there is a lack of information concerning the evidence-based clinical annotations of specific CYP2E1 genetic variants. Aim: To design and evaluate the next-generation sequencing-based method for full-length CYP2E1 gene polymorphism analysis. Materials and Methods: Seven gene-specific oligonucleotide primer pairs targeting overlapping CYP2E1 gene fragments spanning all nine gene exons with interleaving introns, untranslated (UTR) and intergenic regions were designed. Human DNA samples (n = 3) were used as a training set to check the primer performance and to optimize the PCR conditions. The effectiveness of the developed target amplification and sequencing protocol was evaluated using the test set comprising human DNA samples (n = 3) obtained from tuberculosis patients. Sequencing data analysis was performed on the Galaxy online-based platform. Results: The sequencing data quality was sufficient for the detection of genetic variants dispersed throughout the CYP2E1 gene with a high degree of confidence in fully covered regions achieving optimal reading depth of the targeted fragment with high base call accuracy. Conclusion: Developed protocol can be applied in subpopulation-level association studies to determine whether single nucleotide variants (SNVs) or variant combinations from multiple regions of the CYP2E1 gene are of clinical significance.
To the Editor-Mycobacterium chimaera (M. chimaera) is an opportunistic environmental mycobacterium belonging to the M. avium-M. intracellulare complex. Transmission of M. chimaera from contaminated heater-cooler unit (HCU) water tanks to patients is a risk during open-heart surgery. 1 Specifically, investigations have revealed that the contaminated HCU devices (Stockert 3T) came from one particular manufacturing facility, LivaNova in Munich, Germany, and were a likely source for cardiothoracic surgery-related severe M. chimaera infections that occurred in Switzerland, Germany, The Netherlands, and the United Kingdom. 2 The importance of HCUs lies in their ability to regulate the body temperature of a patient during cardiac surgery. However, evidence suggests that the airborne transmission of aerosolized bacteria from the water tanks was responsible for these infections. 2 Currently, the extent of global outbreaks is unknown, but the burden of invasive M. chimaera was estimated to be 156-282 cases per year in 10 countries where most cardiac-valve replacements are performed. 3 We investigated the possible presence of M. chimaera in HCUs in the Cardiothoracic Department,
Background: Urogenital tuberculosis (TB) is rare in children and usually develops due to reactivation of the foci in the genitourinary tract after the latency period following initial infection. Urogenital TB in children has no pathognomonic clinical features that can result in overlooking or misdiagnosing this clinical entity. Here, we report important findings regarding the pathogenesis and transmission of TB by using genotyping and whole-genome sequencing (WGS) in a study of renal TB case in a child. Case presentation: A 13-year-old boy was admitted to the hospital because of high fever, severe dry cough, flank pain and painful urination. Abdominal ultrasonography and CT revealed an 8 mm calculus in the kidney, and clinical findings were initially interpreted as nephrolithiasis. Nevertheless, due to the atypical clinical presentation of kidney stone disease, additional investigations for possible TB were performed. The QuantiFERON®-TB Gold Plus test was positive, and the Mantoux test resulted in 15 mm of induration, confirming infection with Mycobacterium tuberculosis (Mtb). Chest X-ray was normal. Chest CT revealed calcified intrathoracic lymph nodes. The urine sample tested positive for acid-fast bacilli, and Mtb cultures were obtained from urine and bronchial aspirate samples, resulting in a final diagnosis of intrathoracic lymph node and renal TB. Contact investigation revealed that the child's father was diagnosed with TB when the child was 1 year old. Genotyping and WGS analysis of Mtb isolates of the child and his father confirmed the epidemiological link and pointed to the latency of infection in the child. Conclusions: This case report confirmed the development of active TB from calcified lesions in adolescent after 12 years of exposure, demonstrated the absence of microevolutionary changes in the Mtb genome during the period of latency, and proved the importance of appropriate evaluation and management to prevent the progression of TB infection to active TB disease. The use of WGS provided the ultimate resolution for the detection of TB transmission and reactivation events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.