4D printing of shape memory polymers enables the production of thermoresponsive objects. In this contribution, a facile printing strategy is followed for an in-house synthesized thermoplastic poly(ether urethane). Processing by means of fused filament fabrication, in which the difference between nozzle temperature and material-specific glass transition temperature of the polymer is kept as low as possible, allows to obtain highly shrinkable objects whose shape and thermoresponsiveness can be precisely controlled. The effectiveness of the method also applies to the printing material polylactic acid. One possible application lies in highly shrinkable objects for assembly purposes. As proof-of-concept, lightweight hands-free door openers for healthcare applications are functionally simulated and developed. Once printed, such devices shrink when heated to fit on door handles, allowing an easy assembly. At the end-of-use, a heating-initiated disassembling and mechanical recycling are proposed. In perspective, a reuse of the materials in 4D printing can contribute to the emergence of a circular economy for such highly functional materials.
In this paper, the performance of a compact Three-Fluid Combined Membrane Contactor (3F-CMC) is investigated using Computational Fluid Dynamics (CFD), supported and validated with a good agreement by an experimental campaign made on a fully working prototype. This internally-cooled membrane contactor is the core component of a hybrid air conditioning system for electric vehicles (EVs) developed in a successful H2020 project called XERIC. In the adopted numerical approach, the conjugate heat and mass transfer inside the 3F-CMC is described by non-isothermal incompressible flows and vapor transport through a PTFE hydrophobic membrane. The sensitivity of the 3F-CMC performance to air/desiccant flow rates, temperature, humidity, and desiccant concentration is analyzed numerically through the validated CFD codes. According to this study, the moisture removal increases by the inlet humidity ratio, nearly linearly. Under the considered conditions (where the inlet air temperature is 26.2 °C), when the inlet relative humidity (RH) is 75% the moisture removal is about 450% higher than the case RH = 37%, while the absorption effectiveness declines about 45%. Furthermore, this study shows that the amount of absorbed vapor flux rises by increasing the airflow rate; on the other hand, the higher the airflow rate, the lower is the overall absorption efficiency of the 3F-CMC. This investigation gives important suggestions on how to properly operate a 3F-CMC in order to achieve the requested performance, especially in hot and humid climates.
Energy-saving building requires in addition to a good thermal building insulation an airtight building envelope. Leakages in exterior building elements therefore have to be avoided or repaired, also in consideration of the fact that they can lead to structural damage by moisture. Thermal imaging can be used to detect leakages. However, to date only the positioning of the leakage is possible, while the energy loss through the leakage cannot be specified yet. The aim of the analysis at hand was to assess the potential of thermal imaging regarding a simple, fast and precise method to determine the quantity of the energy loss due to the air flow through a leakage. For this purpose an experimental setup was developed and experiments were conducted. Those were compared to results from computational fluid dynamics. In doing so, a very good agreement between experiment and simulation was found
A 3D computational fluid dynamics model was adopted to study the effects of internal cooling on the performance of a three-fluid combined membrane contactor (3F-CMC), in the presence of minitubes in solution and a spacer in the air channel. This compact 3F-CMC is part of a hybrid climate-control system, recently developed for serving in electric vehicles. For the studied operating conditions, results show that the absorption and sensible effectiveness parameters increase up to 77% and 124% by internal cooling, respectively. This study also reports 3D flow effects on the heat and mass transfer enhancement inside the contactor, with implications for further design improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.