While there is general agreement on the necessity to measure glomerular filtration rate (GFR) in many clinical situations, there is less agreement on the best method to achieve this purpose. As the gold standard method for GFR determination, urinary (or renal) clearance of inulin, fades into the background due to inconvenience and high cost, a diversity of filtration markers and protocols compete to replace it. In this review, we suggest that iohexol, a non-ionic contrast agent, is most suited to replace inulin as the marker of choice for GFR determination. Iohexol comes very close to fulfilling all requirements for an ideal GFR marker in terms of low extra-renal excretion, low protein binding and in being neither secreted nor reabsorbed by the kidney. In addition, iohexol is virtually non-toxic and carries a low cost. As iohexol is stable in plasma, administration and sample analysis can be separated in both space and time, allowing access to GFR determination across different settings. An external proficiency programme operated by Equalis AB, Sweden, exists for iohexol, facilitating interlaboratory comparison of results. Plasma clearance measurement is the protocol of choice as it combines a reliable GFR determination with convenience for the patient. Single-sample protocols dominate, but multiple-sample protocols may be more accurate in specific situations. In low GFRs one or more late samples should be included to improve accuracy. In patients with large oedema or ascites, urinary clearance protocols should be employed. In conclusion, plasma clearance of iohexol may well be the best candidate for a common GFR determination method.
. Introduction. Chronic kidney disease (CKD) predisposes to a 10‐ to 20‐fold increased cardiovascular risk. Patients undergo accelerated atherogenesis and vascular ageing. We investigated whether telomere attrition, a marker of cell senescence, contributes to this increased mortality risk. Methods. This is a cross‐sectional study in prevalent haemodialysis patients [n = 175; 98 Males; median (range) age: 66 (23–86) years]. Biochemical markers of oxidative stress and inflammatory status were measured in relation to the patient’s leucocyte telomere length. Overall mortality was assessed after a median of 31 (range 2–42) months. Results. Telomere length was shorter in CKD men, despite women being older (average ± SD 6.41 ± 1.23 vs. 6.96 ± 1.48 kb, P = 0.002). Telomere length was associated with age (rho = −0.18, P = 0.01), fetuin‐A (rho = 0.26, P = 0.0004), high‐sensitivity C‐reactive protein (rho = −0.21, P = 0.005) and IL‐6 (rho = −0.17, P = 0.02). In a multivariate logistic regression (pseudo r2 = 0.14), telomere length was associated with age >65 years (odds ratio: 2.11; 95% CI: 1.10, 4.06), sex (2.01; 1.05, 3.86), fetuin‐A (1.85; 0.97, 3.50) and white blood cell count (2.04; 1.02, 4.09). Receiver operating characteristic curves identified a telomere length < 6.28 kb as a fair predictor of mortality. Finally, reduced telomere length was associated with increased mortality, independently of age, gender and inflammation (likelihood ratio 41.6, P < 0.0001), but dependently on fetuin‐A levels. Conclusion. Age and male gender seem to be important contributors to reduced telomere length in CKD patients, possibly via persistent inflammation. Reduced telomere length also contributes to the mortality risk of these patients through pathways that could involve circulating levels of fetuin‐A.
A reliable assessment of glomerular filtration rate (GFR) is of paramount importance in clinical practice as well as epidemiological and clinical research settings. It is recommended by Kidney Disease: Improving Global Outcomes guidelines in specific populations (anorectic, cirrhotic, obese, renal and non-renal transplant patients) where estimation equations are unreliable. Measured GFR is the only valuable test to confirm or confute the status of chronic kidney disease (CKD), to evaluate the slope of renal function decay over time, to assess the suitability of living kidney donors and for dosing of potentially toxic medication with a narrow therapeutic index. Abnormally elevated GFR or hyperfiltration in patients with diabetes or obesity can be correctly diagnosed only by measuring GFR. GFR measurement contributes to assessing the true CKD prevalence rate, avoiding discrepancies due to GFR estimation with different equations. Using measured GFR, successfully accomplished in large epidemiological studies, is the only way to study the potential link between decreased renal function and cardiovascular or total mortality, being sure that this association is not due to confounders, i.e. non-GFR determinants of biomarkers. In clinical research, it has been shown that measured GFR (or measured GFR slope) as a secondary endpoint as compared with estimated GFR detected subtle treatment effects and obtained these results with a comparatively smaller sample size than trials choosing estimated GFR. Measuring GFR by iohexol has several advantages: simplicity, low cost, stability and low interlaboratory variation. Iohexol plasma clearance represents the best chance for implementing a standardized GFR measurement protocol applicable worldwide both in clinical practice and in research.
Haemodialysis is a life-saving renal replacement modality for end-stage renal disease, but this therapy also represents a major challenge to the intravascular innate immune system, which is comprised of the complement, contact and coagulation systems. Chronic inflammation is strongly associated with cardiovascular disease (CVD) in patients on haemodialysis. Biomaterial-induced contact activation of proteins within the plasma cascade systems occurs during haemodialysis and initially leads to local generation of inflammatory mediators on the biomaterial surface. The inflammation is spread by soluble activation products and mediators that are generated during haemodialysis and transported in the extracorporeal circuit back into the patient together with activated leukocytes and platelets. The combined effect is activation of the endothelium of the cardiovascular system, which loses its anti-thrombotic and anti-inflammatory properties, leading to atherogenesis and arteriosclerosis. This concept suggests that maximum suppression of the intravascular innate immune system is needed to minimize the risk of CVD in patients on haemodialysis. A potential approach to achieve this goal is to treat patients with broad-specificity systemic drugs that target more than one of the intravascular cascade systems. Alternatively, 'stealth' biomaterials that cause minimal cascade system activation could be used in haemodialysis circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.