More than 80 % of patients with Parkinson's disease (PD) develop dysphagia during the course of their disease. Swallowing impairment reduces quality of life, complicates medication intake and leads to malnutrition and aspiration pneumonia, which is a major cause of death in PD. Although the underlying pathophysiology is poorly understood, it has been shown that dopaminergic and non-dopaminergic mechanisms are involved in the development of dysphagia in PD. Clinical assessment of dysphagia in PD patients is challenging and often delivers unreliable results. A modified water test assessing maximum swallowing volume is recommended to uncover oropharyngeal dysphagia in PD. PD-specific questionnaires may also be useful to identify patients at risk for swallowing impairment. Fiberoptic endoscopic evaluation of swallowing and videofluoroscopic swallowing study are both considered to be the gold standard for evaluation of PD-related dysphagia. In addition, high-resolution manometry may be a helpful tool. These instrumental methods allow a reliable detection of aspiration events. Furthermore, typical patterns of impairment during the oral, pharyngeal and/or esophageal swallowing phase of PD patients can be identified. Therapy of dysphagia in PD consists of pharmacological interventions and swallowing treatment by speech and language therapists (SLTs). Fluctuating dysphagia with deterioration during the off-state should be treated by optimizing dopaminergic medication. The methods used during swallowing treatment by SLTs shall be selected according to the individual dysphagia pattern of each PD patient. A promising novel method is an intensive training of expiratory muscle strength. Deep brain stimulation does not seem to have a clinical relevant effect on swallowing function in PD. The goal of this review is giving an overview on current stages of epidemiology, pathophysiology, diagnosis, and treatment of PD-associated dysphagia, which might be helpful for neurologists, speech-language therapists, and other clinicians in their daily work with PD patients and associated swallowing difficulties. Furthermore areas with an urgent need for future clinical research are identified.
In this pilot study, EPS enhanced remission of dysphagia as assessed with fiberoptic endoscopic evaluation of swallowing (FEES), thereby enabling decannulation in 75% of patients.
Dysphagia is a relevant symptom in Parkinson's disease, whose pathophysiology is poorly understood. It is mainly attributed to degeneration of brainstem nuclei. However, alterations in the cortical contribution to deglutition control in the course of Parkinson's disease have not been investigated. Here, we sought to determine the patterns of cortical swallowing processing in patients with Parkinson's disease with and without dysphagia. Swallowing function in patients was objectively assessed with fiberoptic endoscopic evaluation. Swallow-related cortical activation was measured using whole-head magnetoencephalography in 10 dysphagic and 10 non-dysphagic patients with Parkinson's disease and a healthy control group during self-paced swallowing. Data were analysed applying synthetic aperture magnetometry, and group analyses were done using a permutation test. Compared with healthy subjects, a strong decrease of cortical swallowing activation was found in all patients. It was most prominent in participants with manifest dysphagia. Non-dysphagic patients with Parkinson's disease showed a pronounced shift of peak activation towards lateral parts of the premotor, motor and inferolateral parietal cortex with reduced activation of the supplementary motor area. This pattern was not found in dysphagic patients with Parkinson's disease. We conclude that in Parkinson's disease, not only brainstem and basal ganglia circuits, but also cortical areas modulate swallowing function in a clinically relevant way. Our results point towards adaptive cerebral changes in swallowing to compensate for deficient motor pathways. Recruitment of better preserved parallel motor loops driven by sensory afferent input seems to maintain swallowing function until progressing neurodegeneration exceeds beyond the means of this adaptive strategy, resulting in manifestation of dysphagia.
Esophageal body impairment in PD is a frequent phenomenon during all disease stages, which possibly reflects α-synucleinopathy in the enteric nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.