International audienceGold nanostructures (GNS) were chemically functionalized using four different diazonium salts: benzene-diazonium-tetrafluoroborate (DS), 4-decylbenzene-diazonium-tetrafluoroborate (DS-C10H21), 4-carboxybenzene-diazonium-tetrafluoroborate (DS-COOH), and 4-(aminoethyl)-benzene-diazonium-tetrafluoroborate (DS-(CH2)2NH2). Effective chemical grafting on GNS was shown by surface-enhanced Raman spectroscopy (SERS); aromatic ring deformations in the range of 1570–1591 cm–1 are of particular interest. The very strong band observed around 1075 cm–1, related to CH in-plane bending for mono- and para-substituted benzenes (coupled with ring-N stretching mode), provided further irrefutable evidence of the grafting. SERS enhancement of these two bands ascertains the perpendicular orientation of the aromatic rings on the GNS. X-ray photoelectron spectroscopy (XPS) analyses of chemically grafted flat gold surfaces suggest azophenyl radical pathways when using DS, DS-(CH2)2-NH2, or DS-C10H21. It was shown that coating at the interface is the result of a Au–N covalent bond; growth of the layers is via N═N. These XPS results agree with those provided by SERS without excluding the aryl radical pathways. For DS-COOH, the results provided by SERS, XPS, and density functional theory calculations show (i) effective chemical grafting of the GNS via a covalent bond between gold and carboxylate forms and (ii) growth via multilayers in the meta position between aromatic rings through either N═N or C–C bonds
We report on the use of soft UV nanoimprint lithography (UV-NIL) for the development of reproducible, millimeter-sized, and sensitive substrates for SERS detection. The used geometry for plasmonic nanostructures is the cylinder. Gold nanocylinders (GNCs) showed to be very sensitive and specific sensing surfaces. Indeed, we demonstrated that less than 4 ×106 avidin molecules were detected and contributed to the surface-enhanced Raman scattering (SERS) signal. Thus, the soft UV-NIL technique allows to obtain quickly very sensitive substrates for SERS biosensing on surfaces of 1 mm 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.