The importance, extent, and mode of interspecific gene flow for the evolution of species has long been debated. Characterization of genomic differentiation in a classic example of hybridization between all-black carrion crows and gray-coated hooded crows identified genome-wide introgression extending far beyond the morphological hybrid zone. Gene expression divergence was concentrated in pigmentation genes expressed in gray versus black feather follicles. Only a small number of narrow genomic islands exhibited resistance to gene flow. One prominent genomic region (<2 megabases) harbored 81 of all 82 fixed differences (of 8.4 million single-nucleotide polymorphisms in total) linking genes involved in pigmentation and in visual perception-a genomic signal reflecting color-mediated prezygotic isolation. Thus, localized genomic selection can cause marked heterogeneity in introgression landscapes while maintaining phenotypic divergence.
Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.
Being faced with unknown environments is a concomitant challenge of species' range expansions. Strategies to cope with this challenge include the adaptation to local conditions and a flexibility in resource exploitation. The gulls of the Larus argentatus-fuscus-cachinnans group form a system in which ecological flexibility might have enabled them to expand their range considerably, and to colonize urban environments. However, on a population level both flexibility and local adaptation lead to signatures of differential habitat use in different environments, and these processes are not easily distinguished. Using the lesser black-backed gull (Larus fuscus) as a system, we put both flexibility and local adaptation to a test. We compare habitat use between two spatially separated populations, and use a translocation experiment during which individuals were released into novel environment. The experiment revealed that on a population-level flexibility best explains the differences in habitat use between the two populations. We think that our results suggest that the range expansion and huge success of this species complex could be a result of its broad ecological niche and flexibility in the exploitation of resources. However, this also advises caution when using species distribution models to extrapolate habitat use across space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.