Sphingolipids containing 2-hydroxylated fatty acids are among the most abundant lipid components of the myelin sheath and therefore are thought to play an important role in formation and function of myelin. To prove this hypothesis, we generated mice lacking a functional fatty acid 2-hydroxylase (FA2H) gene. FA2H-deficient (FA2H Ϫ/Ϫ ) mice lacked 2-hydroxylated sphingolipids in the brain and in peripheral nerves. In contrast, nonhydroxylated galactosylceramide was increased in FA2H Ϫ/Ϫ mice. However, oligodendrocyte differentiation examined by in situ hybridization with cRNA probes for proteolipid protein and PDGF␣ receptor and the time course of myelin formation were not altered in FA2H Ϫ/Ϫ mice compared with wild-type littermates. Nerve conduction velocity measurements of sciatic nerves revealed no significant differences between FA2H Ϫ/Ϫ and wild-type mice. Moreover, myelin of FA2H Ϫ/Ϫ mice up to 5 months of age appeared normal at the ultrastructural level, in the CNS and peripheral nervous system. Myelin thickness and g-ratios were normal in FA2H Ϫ/Ϫ mice. Aged (18-month-old) FA2H Ϫ/Ϫ mice, however, exhibited scattered axonal and myelin sheath degeneration in the spinal cord and an even more pronounced loss of stainability of myelin sheaths in sciatic nerves. These results show that structurally and functionally normal myelin can be formed in the absence of 2-hydroxylated sphingolipids but that its long-term maintenance is strikingly impaired. Because axon degeneration appear to start rather early with respect to myelin degenerations, these lipids might be required for glial support of axon function.
Hydroxylation is an abundant modification of the ceramides in brain, skin, intestinal tract and kidney. Hydroxylation occurs at the sphingosine base at C-4 or within the amide-linked fatty acid. In myelin, hydroxylation of ceramide is exclusively found at the alpha-C atom of the fatty acid moiety. alpha-Hydroxylated cerebrosides are the most abundant lipids in the myelin sheath. The functional role of this modification, however, is not known. On the basis of sequence similarity to a yeast C26 fatty acid hydroxylase, we have identified a murine cDNA encoding FA2H (fatty acid 2-hydroxylase). Transfection of FA2H cDNA in CHO cells (Chinese-hamster ovary cells) led to the formation of alpha-hydroxylated fatty acid containing hexosylceramide. An EGFP (enhanced green fluorescent protein)-FA2H fusion protein co-localized with calnexin, indicating that the enzyme resides in the endoplasmic reticulum. FA2H is expressed in brain, stomach, skin, kidney and testis, i.e. in tissues known to synthesize fatty acid alpha-hydroxylated sphingolipids. The time course of its expression in brain closely follows the expression of myelin-specific genes, reaching a maximum at 2-3 weeks of age. This is in agreement with the reported time course of fatty acid alpha-hydroxylase activity in the developing brain. In situ hybridization of brain sections showed expression of FA2H in the white matter. Our results thus strongly suggest that FA2H is the enzyme responsible for the formation of alpha-hydroxylated ceramide in oligodendrocytes of the mammalian brain. Its further characterization will provide insight into the functional role of alpha-hydroxylation modification in myelin, skin and other organs.
2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.
Galactosylceramide (GalC) is the major sphingolipid of the myelin membrane. Mice lacking GalC due to ceramide galactosyltransferase (CGT) deficiency form unstable and functionally affected myelin and exhibit a progressive demyelination, accompanied by severe motor coordination deficits. In addition to oligodendrocytes, CGT is also expressed in other cells, e.g., neurons and astrocytes. We examined the possibility that lack of CGT in these cells contributes to the phenotype of CGT-deficient mice. Toward this aim, we generated transgenic mice expressing CGT under the control of oligodendrocyte-specific proteolipid protein (PLP) promoter and examined the possibility of a transgenic rescue of CGT-deficient mice. CGT-deficient mice expressing the PLP-CGT transgene did not show any behavioral abnormalities, normal myelin structure, and MBP levels. CGT activity as well as GalC and sulfatide levels of rescued mice were not significantly different from wild-type controls. Thus, transgenic rescue with the PLP-CGT transgene was apparently complete. In contrast to wild-type and rescued mice, PLP-CGT transgenic mice on a wild-type background exhibited significantly elevated CGT activity which directly correlated with an increase in non-hydroxy fatty acid (NFA)-GalC, but not alpha-hydroxy fatty acid (HFA)-GalC. HFA-GalC decreased in adult transgenic mice, indicating that NFA-GalC, but not HFA-GalC levels are limited by CGT activity. As a consequence, the total amount of GalC is unchanged over a rather wide range of CGT expression levels in the mouse brain. Our results indicate that loss of CGT in oligodendrocytes is exclusively responsible for the myelin structural deficits, demyelination, and behavioral abnormalities in CGT-deficient mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.