Reactive oxygen species (ROS) are involved in the regulation of many physiological processes. However, overproduction of ROS under various cellular stresses results in cell death and organ injury and thus contributes to a broad spectrum of diseases and pathological conditions. The existence of different cellular sources for ROS and the distinct properties of individual ROS (their reactivity, lifetime, etc.) require adequate detection methods. We therefore compared different models of cellular stress and various ROS-sensitive dyes-2',7'-dichlorodihydrofluorescein diacetate (DCF-DA), MitoSOX™, and MitoTracker® red CM-H(2)XRos-using a confocal fluorescent imaging approach, which has the advantage of not only detecting but also of localizing intracellular sources for ROS. Confocal acquisition of DCF-DA fluorescence can be combined with ROS detection by the mitochondria-specific probes MitoSOX™ and MitoTracker® red CM-H(2)XRos. Specificity was controlled using various antioxidants such as Trolox and N-acetylcysteine. Using different fluorescent ROS-sensitive probes, we detected higher ROS production equally under cell starvation (IL-3 or serum depletion), hypoxia-reoxygenation, or treatment of cells with prooxidants. The detected increase in ROS was approximately threefold in IL-3-depleted 32D cells, approximately 3.5-fold in serum-deprived NIH cells, and 2.5-fold to threefold in hypoxic HL-1 cells, and these findings agree well with previously published spectrofluorometric measurements. In some cases, electron spin resonance (ESR) spectroscopy was used for the validation of results from confocal fluorescent imaging. Our data show that confocal fluorescent imaging and ESR data are in good agreement. Under cellular stress, mitochondrial ROS are released into the cytoplasm and may participate in many processes, but they do not escape from the cell.
Here we show that both Antimycin A, a respiratory chain inhibitor inducing apoptosis, and endotoxic shock, a syndrome accompanied by both necrosis and apoptosis, cause not only an increase but also the leakage of superoxide radicals (O(2)(*-)) from rat heart mitochondria (RHM), while O(2)(*-) generated in intact RHM do not escape from mitochondria. This was shown by a set of O(2)(*-)-sensitive spin probes with varying hydrophobicity. The levels of O(2)(*-) detected in intact RHM gradually increase as the hydrophobicity of spin probes increases and were not sensitive to superoxide dismutase (SOD) added to the incubation medium. Both Antimycin A and endotoxic shock elevated O(2)(*-) levels. Elevated O(2)(*-) levels became sensitive to SOD but in a different manner. The determination of O(2)(*-) with water-soluble PPH was fully sensitive to SOD, while the determination of O(2)(*-) with the more hydrophobic CMH and CPH was only partially sensitive to SOD, suggesting the release of a portion of O(2)(*-) into the surrounding medium.
The objective of this study was to investigate early effects of peritoneal inflammation on the mitochondrial function in the vital organs, liver and kidney, and their relation to inflammatory and oxidative stress mediators. The study was performed on 14 domestic pigs. Peritoneal inflammation was induced in anesthetized pigs after a midline laparotomy by autologous feces. Fluid resuscitation maintained a MAP above 60 mmHg. Animals were sacrificed 12 h later, and tissue samples were obtained to determine mitochondrial function, mRNA levels of relevant genes [inducible NO synthase (iNOS), inducible HO (HO-1), tumor necrosis factor-alpha (TNF-alpha)], generation of reactive oxygen species (ROS), and HO-1 activity. We found impaired mitochondrial function in both liver and kidney, based on decreased state 3 respiration in the liver and increased states 2 and 4 respiration in the kidney at 12 h. This was accompanied by increased TNF-alpha protein in the blood and up-regulation of TNF-alpha mRNA in the liver. Free iron was elevated in the liver but not in the kidney. In the kidney, mitochondrial ROS production was increased. Nitric oxide levels in blood remained unchanged, corresponding to unchanged levels of iNOS mRNA expression in liver and kidney. Similarly, HO-1 mRNA and heme oxygenase (HO)-activity were unchanged. The inflammatory response in the absence of characteristic septic symptoms was not associated with morphological organ damage at this early time point. Peritoneal inflammation in pigs caused mitochondrial dysfunction in liver and kidney, preceding signs of organ damage. We did not find proof that mitochondrial dysfunction was due to increased levels of either nitric oxide (NO) or products of HO, but it was accompanied by increased levels of oxidative stress markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.