AMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin. T2D is associated with devastating micro- and macrovascular complications, and O304 improved peripheral microvascular perfusion and reduced blood pressure both in animals and T2D patients. Moreover, like exercise, O304 activated AMPK in the heart, increased cardiac glucose uptake, reduced cardiac glycogen levels, and improved left ventricular stroke volume in mice, but it did not increase heart weight in mice or rats. Thus, O304 exhibits a great potential as a novel drug to treat T2D and associated cardiovascular complications.
E2A, HEB and E2–2 genes encode a group of basic helix‐loop‐helix (bHLH) transcription factors that are structurally and functionally similar. Deletion of the genes encoding either of these proteins leads to early lethality and a block in B lymphocyte development. Evidence for a function in T lymphocyte development has, however, only been reported for E2A and HEB. To further elucidate the role of E2–2 at developmental stages that have proven difficult to study due to the early lethality phenotype of mice defective in E2–2, we generated and analyzed mice conditionally mutated in the E2–2 gene. These mice are mosaic with respect to E2–2 expression, consisting of cells with either one functional and one null mutated E2–2 allele or two null mutated alleles. Using this experimental model, we find that cells with a homozygous null mutated E2–2 gene are under‐represented in B lymphocyte as well as T lymphocyte cell lineages as compared to other hematopoietic or non‐hematopoietic cell lineages. Our data suggests that E2–2 deficiency leads to a partial block in both B and T lymphocyte development. The block in T cell development appears to occur at an early stage in differentiation, since skewing in the mosaicism is observed already in CD4+8+ double‐positive thymocytes.
Notch signaling regulates pancreatic cell differentiation, and mutations of various Notch signaling components result in perturbed pancreas development. Members of the Fringe family of 1,3-N-acetylglucosaminyltransferases, Manic Fringe (MFng), Lunatic Fringe (LFng), and Radical Fringe (RFng), modulate Notch signaling, and MFng has been suggested to regulate pancreatic endocrine cell differentiation. We have characterized the expression of the three mouse Fringe genes in the developing mouse pancreas between embryonic days 9 and 14 and show that the expression of MFng colocalized with the proendocrine transcription factor Ngn3. In contrast, the expression of LFng colocalized with the exocrine marker Ptf1a, whereas RFng was not expressed. Moreover, we show that expression of MFng is lost in Ngn3 mutant mice, providing evidence that MFng is genetically downstream of Ngn3. Gain-and loss-of-function analyses of MFng by the generation of mice that overexpress MFng in early pancreatic progenitor cells and mice with a targeted deletion of MFng provide, however, evidence that MFng is dispensable for pancreas development and function, since no pancreatic defects in these mice were observed.
Background: The homeodomain transcription factor IPF1/PDX1 exerts a dual role in the pancreas; Ipf1/Pdx1 global null mutants fail to develop a pancreas whereas conditional inactivation of Ipf1/Pdx1 in β-cells leads to impaired β-cell function and diabetes. Although several putative target genes have been linked to the β-cell function of Ipf1/Pdx1, relatively little is known with respect to genes regulated by IPF1/PDX1 in early pancreatic progenitor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.