Roquinimex-related 3-quinolinecarboxamide derivatives were prepared and evaluated for treatment of autoimmune disorders. The compounds were tested in mice for their inhibitory effects on disease development in the acute experimental autoimmune encephalomyelitis model and selected compounds in the beagle dog for induction of proinflammatory reaction. Structure-activity relationships are discussed. Compound 8c, laquinimod, showed improved potency and superior toxicological profile compared to the lead compound roquinimex (1b, Linomide) and was selected for clinical studies (currently in phase II).
Inhibitors of dihydroorotate dehydrogenase (DHODH) have been suggested for the treatment of rheumatoid arthritis, psoriasis, autoimmune diseases, Plasmodium, and bacterial and fungal infections. Here we present the structures of N-terminally truncated (residues Met30-Arg396) DHODH in complex with two inhibitors: a brequinar analogue (6) and a novel inhibitor (a fenamic acid derivative) (7), as well as the first structure of the enzyme to be characterized without any bound inhibitor. It is shown that 7 uses the "standard" brequinar binding mode and, in addition, interacts with Tyr356, a residue conserved in most class 2 DHODH proteins. Compared to the inhibitor-free structure, some of the amino acid side chains in the tunnel in which brequinar binds and which was suggested to be the binding site of ubiquinone undergo changes in conformation upon inhibitor binding. Using our data, the loop regions of residues Leu68-Arg72 and Asn212-Leu224, which were disordered in previously studied human DHODH structures, could be built into the electron density. The first of these loops, which is located at the entrance to the inhibitor-binding pocket, shows different conformations in the three structures, suggesting that it may interfere with inhibitor/cofactor binding. The second loop has been suggested to control the access of dihydroorotate to the active site of the enzyme and may be an important player in the enzymatic reaction. These observations provide new insights into the dynamic features of the DHODH reaction and suggest new approaches to the design of inhibitors against DHODH.
A strategy that combines virtual screening and structure-guided selection of fragments was used to identify three unexplored classes of human DHODH inhibitor compounds: 4-hydroxycoumarins, fenamic acids, and N-(alkylcarbonyl)anthranilic acids. Structure-guided selection of fragments targeting the inner subsite of the DHODH ubiquinone binding site made these findings possible with screening of fewer than 300 fragments in a DHODH assay. Fragments from the three inhibitor classes identified were subsequently chemically expanded to target an additional subsite of hydrophobic character. All three classes were found to exhibit distinct structure-activity relationships upon expansion. The novel N-(alkylcarbonyl)anthranilic acid class shows the most promising potency against human DHODH, with IC(50) values in the low nanomolar range. The structure of human DHODH in complex with an inhibitor of this class is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.