This paper presents a secure (tamper-resistant) algorithm for watermarking images, and a methodology for digital watermarking that may be generalized to audio, video, and multimedia data. We advocate that a watermark should be constructed as an independent and identically distributed (i.i.d.) Gaussian random vector that is imperceptibly inserted in a spread-spectrum-like fashion into the perceptually most significant spectral components of the data. We argue that insertion of a watermark under this regime makes the watermark robust to signal processing operations (such as lossy compression, filtering, digital-analog and analog-digital conversion, requantization, etc.), and common geometric transformations (such as cropping, scaling, translation, and rotation) provided that the original image is available and that it can be successfully registered against the transformed watermarked image. In these cases, the watermark detector unambiguously identifies the owner. Further, the use of Gaussian noise, ensures strong resilience to multiple-document, or collusional, attacks. Experimental results are provided to support these claims, along with an exposition of pending open problems.
Digital technologies are being harnessed to support the public-health response to COVID-19 worldwide, including population surveillance, case identification, contact tracing and evaluation of interventions on the basis of mobility data and communication with the public. These rapid responses leverage billions of mobile phones, large online datasets, connected devices, relatively low-cost computing resources and advances in machine learning and natural language processing. This Review aims to capture the breadth of digital innovations for the public-health response to COVID-19 worldwide and their limitations, and barriers to their implementation, including legal, ethical and privacy barriers, as well as organizational and workforce barriers. The future of public health is likely to become increasingly digital, and we review the need for the alignment of international strategies for the regulation, evaluation and use of digital technologies to strengthen pandemic management, and future preparedness for COVID-19 and other infectious diseases. Public-health need Digital tool or technology Example of use Refs. Digital epidemiological surveillance Machine learning Web-based epidemic intelligence tools and online syndromic surveillance Web-based epidemic intelligence tools: 20-23,25 Based on social media or online search data: 30-33 Survey apps and websites Symptom reporting 37,38,48,49 Data extraction and visualization Data dashboard 39-45 Rapid case identification Connected diagnostic device Point-of-care diagnosis 58 Sensors including wearables Febrile symptoms checking 51-53 Machine learning Medical image analysis 65,66
No abstract
This paper presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.