The use of an optical fiber as a real-time distributed microphone is demonstrated employing a phase-OTDR with direct detection. The method comprises a sample-and-hold circuit capable of both tuning the receiver to an arbitrary section of the fiber considered of interest and to recover in real-time the detected acoustic wave. The system allows listening to the sound of a sinusoidal disturbance with variable frequency, music and human voice with ~60 cm of spatial resolution through a 300 m long optical fiber.
With the ever increasing industrial demand for bigger, faster and more efficient systems, a growing number of cores is integrated on a single chip. Additionally, their performance is further maximized by simultaneously executing as many processes as possible without regarding their criticality. Even safety critical domains like railway and avionics apply these paradigms under strict certification regulations. As the number of cores is continuously expanding, the importance of cost-effectiveness grows. One way to increase the cost-efficiency of such System on Chip (SoC) is to enhance the way the SoC handles its power resources. By increasing the power efficiency, the reliability of the SoC is raised because the lifetime of the battery lengthens. Secondly, by having less energy consumed, the emitted heat is reduced in the SoC which translates into fewer cooling devices. Though energy efficiency has been thoroughly researched, there is no application of those power saving methods in safety critical domains yet. The EU project SAFEPOWER 1 targets this research gap and aims to introduce certifiable methods to improve the power efficiency of mixed-criticality real-time systems (MCRTES). This article will introduce the requirements that a power efficient SoC has to meet and the challenges such a SoC has to overcome.
The data link is considered a critical function of modern aircraft, responsible for exchanging information to the ground and communicating to other aircraft. Nowadays, the increasing amount of exchanged data and information brings the need for network usage optimization. In this sense, data compression is considered a key approach to make data packages size smaller. Regarding the fact that avionics systems are safety-critical, it is fundamental not losing data nor performance during the compression procedures. In this context, manufacturers and regulatory agencies usually follow DO-178C guidance. Targeting model-based embedded design guidelines, DO-178C includes a supplement document, named DO-331. In this paper, we describe a widely used data compression algorithm, the Lempel-Ziv-Markov Chain algorithm (LZMA). Regarding formal model-based design, we argue that the synchronous dataflow model of computation captures the algorithm behavior more directly. The Formal System Design (ForSyDe) methodology is used to model the LZMA.
Runtime reconfiguration is one promising way to mitigate for increased failure rate and thereby it fulfills safety requirements needed for future safety-critical avionics systems. In case of a hardware fault, the system is able, during runtime, to automatically detect such fault and redirect the functionality from the defective module to a new safe reconfigured module, thus minimizing the effects of hardware faults. This paper introduces a high level abstraction architecture for safety-critical systems with runtime reconfiguration using the triple modular redundancy and the synchronous model of computation. A modeling strategy to be used in the design phase supported by formal models of computation is also addressed in the paper. The triple modular redundancy technique is used for detecting faults where, in case of inconsistency in one of the three processors caused by a fault, a new processor is reconfigured based on a software or hardware reconfiguration, and it assumes the tasks of the faulty processor. The introduced strategy considers that no other fault occurs during the reconfiguration of a new processor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.