Volatile compounds and extrafloral nectar are common defenses of wild plants; however, in crops they bear an as-yet underused potential for biological control of pests and diseases. Odor emission and nectar secretion are multigene traits in wild plants, and thus form difficult targets for breeding. Furthermore, domestication has changed the capacity of crops to express these traits. We propose that breeding crops for an enhanced capacity for tritrophic interactions and volatile-mediated direct resistance to herbivores and pathogens can contribute to environmentally-friendly and sustainable agriculture. Natural plant volatiles with antifungal or repellent properties can serve as direct resistance agents. In addition, volatiles mediating tritrophic interactions can be combined with nectar-based food rewards for carnivores to boost indirect plant defense.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is an important pest on cereals causing plant growth reduction without specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes, reducing aphid growth. To identify candidate sequences for resistance-related genes, we performed microarray analysis of gene expression after aphid infestation in two susceptible and two partially resistant barley genotypes. One of the four lines is a descendant of two of the other genotypes. There were large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only 24 genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated, with none being common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines. Results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a serine/threonine kinase and several thionins.
Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance.Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.