Cytochrome P450 2E1 (CYP2E1) exhibits a pronounced oxidase activity that may mediate apoptotic injury in glial cells as well as hepatocytes. Strict regulation of CYP2E1 and it's activity is therefore thought to be crucial. We have studied CYP2E1 transcriptional regulation in primary cortical glial cells and have identified a novel repressor element at +1452/+1460 in intron 2 of the rat CYP2E1 gene. The element very potently repressed CYP2E1 and SV40 promoters and consisted of the non-palindromic core sequence 5¢-TTCCACTCA-3¢. Jun proteins were found to interact with the site. The protein complexes were also found to contain an as yet unidentified protein of 60 kDa, probably with DNA binding properties similar to G-box binding factors found in, e.g. Arabidopsis thaliana. Stimulation with lipopolysaccharide, or overexpression of the mitogen-activated protein kinase kinase kinase, MEKK-1, further deepened the repression in primary cortical glial cells. It is suggested that this novel Jun binding repressor helps to control basal expression levels of CYP2E1, and modulates the response to inflammatory factors. Future in vivo experiments will, however, be required for a full appreciation of the role of this repressor in the complex regulation of CYP2E1 during inflammatory conditions.
Because of impaired mental recovery in younger post-infarction patients, their need of special attention in the rehabilitation process must not be overlooked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.