Smart grid infrastructure must be monitored and inspected -especially when subject to harsh operating conditions in extreme, remote environments such as the highlands of Iceland. Current methods for monitoring such critical infrastructure includes manual inspection, static video analysis (where connectivity is available) and unmanned aerial vehicle (UAV) inspection. UAVs offer certain inspection efficiencies; however, challenges persist given the time and UAV operator skill required. Collaborating with Landsnet, the Icelandic smart grid operator, we apply convolutional neural networks for image processing to detect smart grid transmission infrastructure and modify the resulting computer vision (CV) model to function on the edge of a UAV. In doing so, we overcome significant edge processing barriers. Our real-time CV model delivers decision insight on the UAV edge and enables autonomous flight path planning for use in smart grid inspection. Our approach is transferable to other smart city applications that could benefit from edge-based monitoring and inspection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.