This review emphasizes the role and performance of versatile DC-DC converters in AC/DC and Hybrid microgrid applications, especially when solar (photo voltaic) PV is the major source. Here, the various converter topologies are compared with regard to voltage gain, component count, voltage stress, and soft switching. This study suggests the suitability of the converter based on the source type. The merits of a coupled inductor and interleaved converters in micro gird applications are elucidated. The efficiency and operating frequencies of converts for different operating modes are presented to determine the suitable converters for inductive and resistive loads. The drawbacks of converters are discussed. Finally, the mode of operation of different converts with different grid power sources and its stability and reliability issues are highlighted. In addition, the significance of the converter’s size and cost-effectiveness when choosing various PV source applications are discussed.
This paper is reported with different kinds of DC-DC converters such as sepic, boost and bidirectional converters. Integrating the boost, sepic, bidirectional DC-DC converters enables to identify the suitable converter for renewable energy applications with accurate power rating. The performance of non-isolated converter is assessed on the basis of these review. The solar PV conversion efficiency is low, so the converter is used to step-up/step down the voltage levels. This paper attempts to perform by examing efficiency of DC-DC converters and the voltage and current stress on the switches. A detailed review is carried out on basic PV and fuel cell based electric vehicles.
The design of high voltage gain DC-DC boost converter is carried out with the addition of the Voltage Multiplier (VM) method. Here the coupled inductor and VM methodologies are proposed to reduce the switching and conduction losses of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The Zero Current Switching (ZCS) technique with coupled inductor leakage inductance is used to operate the MOSFET. The leakage inductance is used to decrease the reverse recovery current across the diode. The design procedure of the boost converter and corresponding output waveforms are presented in this paper. Photovoltaic (PV) source converter with coupling inductors soft switching technique has been analyzed and tested in this paper.
In this manuscript, a DC-DC converter of modified multilevel sepic model with single switch is proposed here. The designed converter combines the voltage tripler circuit, which improves the voltage gain and reduces the voltage ripple of the system. Another feature of the designed converter is reduces the voltage stress and utilized for PV based applications. The operation of the designed converter in Continuous-Conduction Mode (CCM) is discussed. The converter boosts the PV input voltage of 30 V to 400 V output voltages. The efficiency attained by the designed converter is 94%. The Theoretical analysis of the designed converter is presented and it is done with MATLAB simulink. To analyse the performance of this DC-DC converter a model was developed and tested. From the experimental results obtained, it is analysed that the converter performs better and suitable for PV based application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.