The uptake of Eu by calcium silicate hydrate (C-S-H) phases as a function of Eu/sorbate ratio (from 37 to 450 micromol g(-1) C-S-H), C-S-H Ca/Si mole ratio (1.3, 1.0, and 0.7), and initial supersaturating conditions was probed by solution kinetics experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy, to shed light on the retention mechanism of trivalent radionuclides under waste repository conditions. The rates of Eu (9.7 x 10(-10) M) uptake in C-S-H suspensions and in solutions at equilibrium with C-S-H were rapid. Uptake of more than 90% of dissolved Eu was generally observed within 15 min. Europium LIII-edge EXAFS spectra collected on samples of Eu sorbed on, or coprecipitated in, C-S-H differed from that of Eu(OH)3(s) expected to precipitate under the pH conditions of C-S-H waters, ruling out compelling precipitation of pure hydroxide phases. Fourier transforms for EXAFS spectra for Eu in sorption/coprecipitation samples displayed comparable features at distances typical of neighboring cationic shells, pointing to similar crystallochemical environments. Optimal spectral simulations were obtained by assuming the presence of Si, Si/Ca, and Ca cationic shells surrounding Eu at distances of 3.2, 3.7-3.8, and 3.8-3.9 A, respectively. The nearly continuous distribution of (Si, Ca) backscattering shells parallels the distribution in Ca-(Ca, Si) interatomic distances in structural models of C-S-H. Discernible effects of experimental parameters on the Eu local environment were observed by comparison of Fourier transforms, but could not be confirmed by EXAFS quantitative analysis. These results indicate that sorbed or coprecipitated Eu is located at Ca structural sites in a C-S-H-like environment. Kinetics and spectroscopic results are consistent with either Eu diffusion within C-S-H particles or precipitation of Eu with Ca and Si creating a C-S-H-like solid phase.
http://www.radiochimacta.deInternational audienceThe U(VI) uptake in degraded cement pastes was undertaken in the laboratories of CEA/L3MR and SUBATECH in order to check the reproducibility of the study. Two well hydrated cement pastes, CEM I (Ordinary Portland Cement, OPC) and CEM V (blast furnace slag (BFS) and fly ash added to OPC) were degraded using similar protocols. Equilibrium solutions and solid materials were characterised for three degradation states for each paste. All samples are free of portlandite and the pH of the equilibrated cement solutions vary in the range 9.8–12.2. Three calcium silicate hydrate phases (C-S-H) were synthesised in order to compare the sorption properties of degraded cement pastes and of hydrate phases in similar pH conditions. In order to avoid precipitation processes, the operational solubility limit was evaluated before batch experiments. These solubility values vary significantly in the pH range [9–13] with a 2.4×10−7 mol/L minimum at pH close to 10.5. In batch sorption experiments, the distribution ratio Rd values are high: 30000–150000 mL/g. The uptake of U(VI) increases when comparing the least and the most degraded cement pastes whereas the initial composition of cement has relatively insensitive effect. Sorption isotherms, expressed as a log [U(VI)solid]/ log [U(VI)solution] plots are linear. A slope of 1 is calculated indicating the predominance of sorption processes. As sorption and desorption values are close, the uptake mechanism seems reversible. The Rd values measured in C-S-H suspensions are in good agreement with Rd values of degraded cement pastes, and C-S-H materials could be one of the cementitious phases which control U(VI) uptake in cement pastes
To cite this version:I. Pointeau, N. Coreau, Pascal E. Reiller. Uptake of anionic radionuclides onto degraded cement pastes and competing effect of organic ligands. Radiochimica Acta, R Oldenbourg Verlag GMBH, 2008, 96 (6) .0), corresponding to the decalcification of the calcium silicate hydrate (C-S-H) phases. The behaviour of anionic RN seems to be correlated to the evolution of calcium concentration and is opposed to the evolution of sulphate concentration in solution which could have a competing effect. Comparison is done with the behaviour of caesium and uranium(VI), which is a cationic RN but has a major negative hydrolysed species at high pH. As awaited, the uranium(VI) behaviour is very different from purely anionic RN one in accord with spectroscopic analyses from literature works. The R d values have also been measured for the organic ligands isosaccharinate (ISA) and EDTA. The uptake of ISA can be important and competing effect with the sorption of SeO 3 2− has been evidenced in HCP suspensions as a function of the ISA concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.