To connect human biology to fish biomedical models, we sequenced the
genome of spotted gar (Lepisosteus oculatus), whose lineage
diverged from teleosts before the teleost genome duplication (TGD). The slowly
evolving gar genome conserved in content and size many entire chromosomes from
bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the
evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and
miRNA genes). Numerous conserved non-coding elements (CNEs, often
cis-regulatory) undetectable in direct human-teleost
comparisons become apparent using gar: functional studies uncovered conserved
roles of such cryptic CNEs, facilitating annotation of sequences identified in
human genome-wide association studies. Transcriptomic analyses revealed that the
sum of expression domains and levels from duplicated teleost genes often
approximate patterns and levels of gar genes, consistent with
subfunctionalization. The gar genome provides a resource for understanding
evolution after genome duplication, the origin of vertebrate genomes, and the
function of human regulatory sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.