Polycyclic aromatic hydrocarbons (PAHs) are some of the most widespread xenobiotic pollutants, with the potentially carcinogenic high-molecular-weight representatives being of particular interest. However, while in eukaryotes, the cytochrome P450 (CYP)-mediated activation of benzo[a]pyrene (B[a]P) has become a model for metabolism-mediated carcinogenesis, the oxidative degradation of B[a]P by microorganisms is less well studied. This should be reason for concern as the human organ most exposed to environmental PAHs is the skin, which at the same time is habitat to a most diverse population of microbial commensals. Yet, nothing is known about the skin's microbiome potential to metabolise B[a]P. This study now reports on the isolation of 21 B[a]P-degrading microorganisms from human skin, 10 of which were characterised further. All isolates were able to degrade B[a]P as sole source of carbon and energy, and degradation was found to be complete in at least four isolates. Substrate metabolism involved two transcripts that encode a putative DszA/NtaA-like monooxygenase and a NifH-like reductase, respectively. Analysis of the 16S-rRNA genes showed that the B[a]P-degrading isolates comprise Gram(+) as well as Gram(-) skin commensals, with Micrococci being predominant. Moreover, microbial B[a]P-degradation was detected on all volunteers probed, indicating it to be a universal feature of the skin's microbiome.
The use of nanocrystalline titanium dioxide films as affinity targets for the selective isolation and enrichment of phosphopeptides with subsequent analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry is described. A strong affinity of phosphopeptides to anatase titanium dioxide surfaces is observed, and a standard protocol for the selective isolation and enrichment of phosphopeptides on titanium dioxide films using a proteolytic digest of alpha- and beta-casein was developed. All washing and elution procedures using these films can be processed directly on the MALDI target, thereby avoiding sample contamination and losses. In addition, the enrichment of the phosphopeptides was improved due to a considerable enlargement of the surface. Several film substrates compatible with routine inlet systems of mass spectrometers, as conductive glass, aluminum, and silicon, have been manufactured and tested. A biological application was examined by the human fibrinogen-thrombin system. For a quantification and comparison of different expression levels of phosphoproteins in biological systems, the peptides were labeled with S-methyl thioimidate reagents. The capability of this method for high-throughput applications make the use of mesoporous titanium dioxide films as an affinity MALDI target a promising tool in phosphoproteomics. A combination of an amidation protocol showed that a quantification of phosphorylated peptides can easily be performed using TiO(2) films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.