Nowadays, the prototypes of microfluidic systems are generally produced via micromilling of thermoplastic polymethyl methacrylate (PMMA). The main limitations are the design of micro tools with diameters D ≤ 50 μm adapted for each application, and the understanding of the machining process itself. The objective of this research work is to contribute to mastering the process of PMMA micromilling with tool diameters D ≤ 50 μm on a 3-axes precision milling machine. For this purpose, the process design must include the complete process chain-from the CAD/CAM data up to the final structure geometry. The main requirements are the manufacture of microfluidic structures with R a < 60 nm on the groove bottom and a top burr overhang h 0 < 3 μm. Based on the experimental results, milling parameters were established and the influence of the tool geometry on the burr formation was determined. Finally, CAD/CAM machining strategies were recommended.Keywords Micromachining . Micromilling . Lab-on-chip . Ultra-small micro end mill
Microorganisms growing in biofilms might be possible biocatalysts for future biotechnological production processes. Attached to a surface and embedded in an extracellular polymeric matrix, they create their preferred environment and form robust cultures for continuous systems. With the objective of implementing highly efficient processes, productive biofilms need to be understood comprehensively. In this study, the influence of microstructured metallic surfaces on biofilm productivity was researched. To conduct this study, titanium and stainless steel sheets were polished, micromilled, as well as coated with particles. Subsequently, the metal sheets were exposed to the lactic acid producing Lactobacillus delbrueckii subsp. lactis under laminar and homogeneous flow conditions in a custom-built flow cell. A proof-ofconcept showed that biofilm formation in the system only occurred on the designated substratum. Following a 24-h batch cultivation for primary biofilm development, the culture was continuously provided with glucose containing medium. As different experimental series have indicated, the process resulted to be stable for up to eleven days. Primary metabolite productivity averaged around 6-7 g/(L h). Interestingly, the productivity was shown to be affected neither by the type of metal, nor by the applied microstructures. Nevertheless, a higher dry biomass weight determined on micro-milled substratum indicates a complementary differentiation of biofilm components in future experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.