The digitalization of the legal domain has been ongoing for a couple of years. In that process, the application of different machine learning (ML) techniques is crucial. Tasks such as the classification of legal documents or contract clauses as well as the translation of those are highly relevant. On the other side, digitized documents are barely accessible in this field, particularly in Germany. Today, deep learning (DL) is one of the hot topics with many publications and various applications. Sometimes it provides results outperforming the human level. Hence this technique may be feasible for the legal domain as well. However, DL requires thousands of samples to provide decent results. A potential solution to this problem is multi-task DL to enable transfer learning. This approach may be able to overcome the data scarcity problem in the legal domain, specifically for the German language. We applied the state of the art multi-task model on three tasks: translation, summarization, and multi-label classification. The experiments were conducted on legal document corpora utilizing several task combinations as well as various model parameters. The goal was to find the optimal configuration for the tasks at hand within the legal domain. The multi-task DL approach outperformed the state of the art results in all three tasks. This opens a new direction to integrate DL technology more efficiently in the legal domain.
Historically speaking, the German legal language is widely neglected in NLP research, especially in summarization systems, as most of them are based on English newspaper articles. In this paper, we propose the task of automatic summarization of German court rulings. Due to their complexity and length, it is of critical importance that legal practitioners can quickly identify the content of a verdict and thus be able to decide on the relevance for a given legal case. To tackle this problem, we introduce a new dataset consisting of 100k German judgments with short summaries. Our dataset has the highest compression ratio among the most common summarization datasets. German court rulings contain much structural information, so we create a pre-processing pipeline tailored explicitly to the German legal domain. Additionally, we implement multiple extractive as well as abstractive summarization systems and build a wide variety of baseline models. Our best model achieves a ROUGE-1 score of 30.50. Therefore with this work, we are laying the crucial groundwork for further research on German summarization systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.