The mechanisms that determine full recovery versus subsequent progressive CKD after AKI are largely unknown. Because macrophages regulate inflammation as well as epithelial recovery, we investigated whether macrophage activation influences AKI outcomes. IL-1 receptor-associated kinase-M (IRAK-M) is a macrophage-specific inhibitor of Toll-like receptor (TLR) and IL-1 receptor signaling that prevents polarization toward a proinflammatory phenotype. In postischemic kidneys of wild-type mice, IRAK-M expression increased for 3 weeks after AKI and declined thereafter. However, genetic depletion of IRAK-M did not affect immunopathology and renal dysfunction during early postischemic AKI. Regarding long-term outcomes, wild-type kidneys regenerated completely within 5 weeks after AKI. In contrast, IRAK-M 2/2 kidneys progressively lost up to two-thirds of their original mass due to tubule loss, leaving atubular glomeruli and interstitial scarring. Moreover, M1 macrophages accumulated in the renal interstitial compartment, coincident with increased expression of proinflammatory cytokines and chemokines. Injection of bacterial CpG DNA induced the same effects in wild-type mice, and TNF-a blockade with etanercept partially prevented renal atrophy in IRAK-M 2/2 mice. These results suggest that IRAK-M induction during the healing phase of AKI supports the resolution of M1 macrophage-and TNF-a-dependent renal inflammation, allowing structural regeneration and functional recovery of the injured kidney. Conversely, IRAK-M loss-of-function mutations or transient exposure to bacterial DNA may drive persistent inflammatory mononuclear phagocyte infiltrates, which impair kidney regeneration and promote CKD. Overall, these results support a novel role for IRAK-M in the regulation of wound healing and tissue regeneration.
AKI involves early Toll-like receptor (TLR)-driven immunopathology, and resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, activation of TLRs also has been implicated in epithelial repair. We hypothesized that TLR signaling drives tubule regeneration after acute injury through the induction of certain ILs. Systematic screening in vitro identified IL-22 as a candidate proregeneratory factor in primary tubular cell recovery, and IL-22 deficiency or IL-22 blockade impaired postischemic tubular recovery after AKI in mice. Interstitial mononuclear cells, such as dendritic cells and macrophages, were the predominant source of IL-22 secretion, whereas IL-22 receptor was expressed by tubular epithelial cells exclusively. Depleting IL-22-producing cells during the healing phase impaired epithelial recovery, which could be rescued entirely by reconstituting mice with IL-22. In vitro, necrotic tubular cells and oxidative stress induced IL-22 secretion selectively through TLR4. Although TLR4 blockade during the early injury phase prevented tubular necrosis and AKI, TLR4 blockade during the healing phase suppressed IL-22 production and impaired kidney regeneration. Taken together, these results suggest that necrotic cell-derived TLR4 agonists activate intrarenal mononuclear cells to secrete IL-22, which accelerates tubular regeneration and recovery in AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.