Power system security is increasingly endangered due to novel power flow situations caused by the growing integration of distributed generation. Consequently, grid operators are forced to request the curtailment of distributed generators to ensure the compliance with operational limits more often. This research proposes a framework to simulate the incidental amount of renewable energy curtailment based on load flow analysis of the network. Real data from a 110 kV distribution network located in Germany are used to validate the proposed framework by implementing best practice curtailment approaches. Furthermore, novel operational concepts are investigated to improve the practical implementation of distributed generation curtailment. Specifically, smaller curtailment level increments, coordinated selection methods, and an extension of the n-1 security criterion are analyzed. Moreover, combinations of these concepts are considered to depict interdependencies between several operational aspects. The results quantify the potential of the proposed concepts to improve established grid operation practices by minimizing distributed generation curtailment and, thus, maximizing power system integration of renewable energies. In particular, the extension of the n-1 criterion offers significant potential to reduce curtailment by up to 94.8% through a more efficient utilization of grid capacities.
The growing integration of renewable energy sources (RES) into the power system causes congestion to occur more frequently. In order to reduce congestion in the short term and to make the utilization of the power system more efficient in the long term, power flow control (PFC) in the transmission system has been proposed. However, exemplary studies show that congestion will increase also in the distribution system if the transmission system is expanded. For this reason, the potential of PFC to reduce congestion in a model of a real 110 kV distribution system is investigated. Several Unified Power Flow Controller (UPFC) devices are optimized in terms of their number and placement in the power system, their size, control parameters, and costs, by using a Parallel Tempering approach as well as a greedy algorithm. Two optimization variants are considered, one reducing the number of degrees of freedom by integrating system knowledge while the other does not. It is found that near a critical grid state and disregarding costs, PFC can reduce congestion significantly (99.13%). When costs of the UPFCs are taken into account, PFC can reduce congestion by 73.2%. A basic economic analysis of the costs reveals that the usage of UPFCs is profitable. Furthermore, it is found that the reduction in the solution space of the optimization problem leads to better results faster and that, contrary to expectations, the optimization problem is simple to solve. The developed methods allow not only for the determination of the optimal use of UPFCs to minimize congestion, but also to estimate their profitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.