Biodiversity is unevenly distributed on Earth and hotspots of biodiversity are often associated with areas that have undergone orogenic activity during recent geological history (i.e. tens of millions of years). Understanding the underlying processes that have driven the accumulation of species in some areas and not in others may help guide prioritization in conservation and may facilitate forecasts on ecosystem services under future climate conditions. Consequently, the study of the origin and evolution of biodiversity in mountain systems has motivated growing scientific interest. Despite an increasing number of studies, the origin and evolution of diversity hotspots associated with the Qinghai-Tibetan Plateau (QTP) remains poorly understood. We review literature related to the diversification of organisms linked to the uplift of the QTP. To promote hypothesis-based research, we provide a geological and palaeoclimatic scenario for the region of the QTP and argue that further studies would benefit from providing a complete set of complementary analyses (molecular dating, biogeographic, and diversification rates analyses) to test for a link between organismic diversification and past geological and climatic changes in this region. In general, we found that the contribution of biological interchange between the QTP and other hotspots of biodiversity has not been sufficiently studied to date. Finally, we suggest that the biological consequences of the uplift of the QTP would be best understood using a meta-analysis approach, encompassing studies on a variety of organisms (plants and animals) from diverse habitats (forests, meadows, rivers), and thermal belts (montane, subalpine, alpine, nival). Since the species diversity in the QTP region is better documented for some organismic groups than for others, we suggest that baseline taxonomic work should be promoted.
Aim We investigated the historical biogeography and diversification of Gentiana L. (Gentianaceae). Our study depicts the origin and dispersal routes of this alpine genus, and the role of the uplift of the Qinghai–Tibet Plateau (QTP) and past climate changes as triggers for its diversification. Location Tibeto‐Himalayan region and world‐wide mountain habitats. Methods Our sampling represents more than 50% of the extant Gentiana species, including all sections across their entire geographical ranges. We investigated the evolutionary history of Gentiana using phylogenetic reconstructions (maximum likelihood and Bayesian inference) of ITS, atpB–rbcL and trnL–trnF sequences, as well as molecular dating with beast. We tested two approaches of ancestral area reconstructions (DEC, DIVA) in BioGeoBEARS and investigated diversification rates using BAMM. Results The common ancestor of Gentiana and subtribe Gentianinae lived in the QTP region at around 34 (25–45) million years ago (Ma), and 40 (29–52) Ma respectively. From the surroundings of the QTP, Gentiana lineages dispersed to eastern China, Taiwan, Europe, North and South America, Australia and New Guinea, from mid‐Miocene onward (c. 15 Ma–present), with only one older dispersal event to Europe (c. 37–21 Ma). Diversification rates gradually increased over time, and two switches of diversification rates were identified in Gentianinae (c. 7 Ma, simultaneously in the Pneumonanthe/Cruciata lineage and in Tripterospermum). Main conclusions Gentiana existed in the QTP region throughout most of its uplift history following the India‐Asia collision. This region acted as the primary source area for dispersals to many areas of the world. Because steady increase in diversification rates coincides with the extension of the QTP, we argue that the museum theory rather than the explosive radiation theory prevails for gentians in this region, although rare shifts of diversification rates are associated with niche shifts across the alpine/subalpine ecotone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.