The monitoring of animals under human care is a crucial tool for biologists and zookeepers to keep track of the animals’ physical and psychological health. Additionally, it enables the analysis of observed behavioral changes and helps to unravel underlying reasons. Enhancing our understanding of animals ensures and improves ex situ animal welfare as well as in situ conservation. However, traditional observation methods are time- and labor-intensive, as they require experts to observe the animals on-site during long and repeated sessions and manually score their behavior. Therefore, the development of automated observation systems would greatly benefit researchers and practitioners in this domain. We propose an automated framework for basic behavior monitoring of individual animals under human care. Raw video data are processed to continuously determine the position of the individuals within the enclosure. The trajectories describing their travel patterns are presented, along with fundamental analysis, through a graphical user interface (GUI). We evaluate the performance of the framework on captive polar bears (Ursus maritimus). We show that the framework can localize and identify individual polar bears with an F1 score of 86.4%. The localization accuracy of the framework is 19.9±7.6 cm, outperforming current manual observation methods. Furthermore, we provide a bounding-box-labeled dataset of the two polar bears housed in Nuremberg Zoo.
Automated monitoring systems have become increasingly important for zoological institutions in the study of their animals’ behavior. One crucial processing step for such a system is the re-identification of individuals when using multiple cameras. Deep learning approaches have become the standard methodology for this task. Especially video-based methods promise to achieve a good performance in re-identification, as they can leverage the movement of an animal as an additional feature. This is especially important for applications in zoos, where one has to overcome specific challenges such as changing lighting conditions, occlusions or low image resolutions. However, large amounts of labeled data are needed to train such a deep learning model. We provide an extensively annotated dataset including 13 individual polar bears shown in 1431 sequences, which is an equivalent of 138,363 images. PolarBearVidID is the first video-based re-identification dataset for a non-human species to date. Unlike typical human benchmark re-identification datasets, the polar bears were filmed in a range of unconstrained poses and lighting conditions. Additionally, a video-based re-identification approach is trained and tested on this dataset. The results show that the animals can be identified with a rank-1 accuracy of 96.6%. We thereby show that the movement of individual animals is a characteristic feature and it can be utilized for re-identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.