The Class-E with finite feed inductance is a high-efficiency power amplifier that generally uses complex, long, and iterative design procedures. In this paper, we detail a design methodology that is based on an analytical model of this amplifier. This methodology explores the power amplifier design by the use of a symbolic mathematical tool, which was developed in the software Maple™. This approach helps to understand the Class-E circuit topology and it offers a fast and easy design procedure without having to examine, in-depth, the model analytical equations.
Atmospheric Water Generators (AWG) are a promising technology solution to the water scarcity in the world. However, their main drawback is the high power consumption. This paper presents the experimental optimization process of a Portable Atmospheric Water Generator (PAWG) prototype based on a thermometric cooler. This process was developed by an exhaustive search of the experimental solution space, which was generated by parametric sweeps of two parameters (i.e., control voltages in the PAWG), which are related to the power consumption of the PAWG and the physical variables involved in the water condensation process (i.e., the airflow and the temperature on the water condenser element). As a result, we found the existence of two optimal operation points under a constant value of relative humidity; one of them maximizes the amount of water generated, and the other one maximizes the system performance (i.e., the ratio between the generated water and consumed power in mL/Wh). The resulting Figures of Merit (FoMs) of the PAWG prototype were 0.33 mL/h of generated water and 0.22 mL/Wh for the system performance.
In this paper, a novel SIBO (Single-Inductor Bipolar-Output) DC/DC Boost converter is proposed to power OLED (Organic Light-Emitting Diode) microdisplays. The proposed topology merges a conventional SISO (Single-Inductor Single-Output) DC/DC Boost converter and a switched capacitor inverter to produce a SIBO converter without both the cross-regulation effect and the unbalanced output voltages. Moreover, its control circuit and efficiency are almost the same as the conventional SISO Boost converter. Therefore, the novel converter maintains the power density, the small form factor, and the high efficiency of its conventional counterpart. The proposed converter was analyzed under continuous-conduction mode operation using the moving average operator and charge conservation principle. As a result, the authors proposed an equation set with the main averages and ripples of the circuit variables expressed as analytical functions of the circuit components, the input voltage, and the duty cycle. Both the functionality of the proposed converter and the accuracy of the developed equation set were analyzed by extensive simulations. The simulation performed using ideal components was characterized by a mean absolute percentage error of 0.774% with a standard deviation of 1.566%. These results confirm the high accuracy of the proposed equation set. Furthermore, the non-ideal model simulation confirms the functionality of the proposed converter in “real” operation conditions. Under simulation with non-ideal components, the result statistics were a mean absolute percentage error of 7.36% with a standard deviation of 6.91%. Therefore, the converter design using the proposed ideal model could be a good start point of a converter optimization process based on more complex component models and assisted by computer-aided design tools.
Kounis syndrome (KS) is a rare syndrome characterized by the co-occurrence of acute coronary syndromes in the setting of mast cell and platelet activation in response to hypersensitivity reactions. It can be manifested as coronary vasospasms, acute myocardial infarction, or stent thrombosis triggered by drugs, vaccines, foods, coronary stents, and insect bites. It is a life-threatening condition that needs to be adequately recognized for early diagnosis and appropriate treatment. In this case report, we present a 71-year-old patient with a history of arterial hypertension and non-ST elevation myocardial infarction six months earlier that was treated percutaneously with angioplasty plus stent implantation in the circumflex artery, who subsequently presented to the emergency department due to generalized itching associated with tongue swelling, dyspnea, and chest pain after ingestion of ciprofloxacin for the treatment of a urogenital infection. An electrocardiogram showed ST elevation in II, III, and aVF leads, and positive troponin; thus, a coronary arteriography was performed that showed complete thrombotic stent occlusion in the circumflex artery. Consequently, diagnosis of type 4b inferolateral acute myocardial infarction secondary to ciprofloxacin-triggered type III Kounis syndrome was made. The aim of this report is to understand the relationship between the allergic reaction to ciprofloxacin and the acute coronary syndrome, and to create awareness of the importance of early diagnosis and treatment of this potentially fatal syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.