Although foamy viruses (Spumaviruses) have repeatedly been isolated from both healthy and diseased cats, cattle, and primates, the primary mode of transmission of those common viruses remains undefined. A database of the feline foamy virus (FeFV) and feline immunodeficiency virus (FIV) antibody status, age, and sex of 389 domestic cats presented to veterinarians was assembled. A similar database for 66 feral (wild) cats was also assembled. That FeFV antibody status reflects infection was validated by PCR. Both FeFV and FIV infection rates were found to gradually increase with age, and over 70% of cats older than 9 years were seropositive for FeFV. In domestic cats, the prevalence of FeFV infection was similar in both sexes. In feral cats, FeFV infection was more prevalent in female cats than in male cats. Although both FeFV and FIV have been reported to be transmitted by biting, the patterns of infection observed are more consistent with an interpretation that transmission of these two retroviruses is not the same. The prevalence of FIV infection is highest in nondesexed male cats, the animals most likely to display aggressive behavior. The gradual increase in the proportion of FeFV-infected animals is consistent with transmission of foamy viruses by intimate social contact between animals and less commonly by aggressive behavior.
Foamy viruses, or spumaviruses, are distinct members of the Retroviridae. Here we have characterized the long terminal repeat of the feline, or cat, foamy virus by determining the locations of the transcriptional start site and the poly(A) addition site. The splice donor and splice acceptor sites of the subgenomic mRNA responsible for Pro-Pol protein expression were identified by nucleotide sequencing of the corresponding cDNAs. The leader exon of the feline foamy virus is 57 nucleotides long. The splice acceptor of the subgenomic pol mRNA was found to be located in gag. The location of the splice acceptor of the human foamy virus pol mRNA was confirmed to map in gag. The pol splice acceptor site in gag of the cat foamy virus is located further downstream than that of human foamy virus.
The genome of the feline foamy virus (FeFV) isolate FUV was characterized by molecular cloning and nucleotide sequence analysis of subgenomic proviral DNA. The overall genetic organization of FeFV and protein sequence comparisons of different FeFV genes with their counterparts from other known foamy viruses confirm that FeFV is a complex foamy virus. However, significant differences exist when FeFV is compared with primate foamy viruses. The FeFV Gag protein is smaller than that of the primate spumaviruses, mainly due to additional MA/CA sequences characteristic of the primate viruses only. Gag protein sequence motifs of the NC domain of primate foamy viruses assumed to be involved in genome encapsidation are not conserved in FeFV. FeFV Gag and Pol proteins were detected with monospecific antisera directed against Gag and Pol domains of the human foamy virus and with antisera from naturally infected cats. Proteolytic processing of the FeFV Gag precursor was incomplete, whereas more efficient proteolytic cleavage of the pre125 Pro-Pol protein was observed. The active center of the FeFV protease contains a Gln that replaces an invariant Gly residue at this position in other retroviral proteases. Functional studies on FeFV gene expression directed by the promoter of the long terminal repeat showed that FeFV gene expression was strongly activated by the Bel1/Tas transactivator protein. The FeFV Bel1/Tas transactivator is about one-third smaller than its counterpart of primate spumaviruses. This difference is also reflected by a limited sequence similarity and only a moderate conservation of structural motifs of the different foamy virus transactivators analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.