In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.