Abstract. In the low-nutrient, redox-stratified Lake Medard (Czechia), reductive Fe(III) dissolution outpaces sulfide generation from microbial sulfate reduction (MSR) and ferruginous conditions occur without quantitative sulfate depletion. The lake currently has marked overlapping C, N, S, Mn and Fe cycles occurring in the anoxic portion of the water column. This feature is unusual in stable, natural, redox-stratified lacustrine systems where at least one of these biogeochemical cycles is functionally diminished or undergoes minimal transformations because of the dominance of another component or other components. Therefore, this post-mining lake has scientific value for (i) testing emerging hypotheses on how such interlinked biogeochemical cycles operate during transitional redox states and (ii) acquiring insight into redox proxy signals of ferruginous sediments underlying a sulfatic and ferruginous water column. An isotopically constrained estimate of the rates of sulfate reduction (SRRs) suggests that despite high genetic potential, this respiration pathway may be limited by the rather low amounts of metabolizable organic carbon. This points to substrate competition exerted by iron- and nitrogen-respiring prokaryotes. Yet, the planktonic microbial succession across the nitrogenous and ferruginous zones also indicates genetic potential for chemolithotrophic sulfur oxidation. Therefore, our SRR estimates could rather be portraying high rates of anoxic sulfide oxidation to sulfate, probably accompanied by microbially induced disproportionation of S intermediates. Near and at the anoxic sediment–water interface, vigorous sulfur cycling can be fuelled by ferric and manganic particulate matter and redeposited siderite stocks. Sulfur oxidation and disproportionation then appear to prevent substantial stabilization of iron monosulfides as pyrite but enable the interstitial precipitation of microcrystalline equant gypsum. This latter mineral isotopically recorded sulfur oxidation proceeding at near equilibrium with the ambient anoxic waters, whilst authigenic pyrite sulfur displays a 38 ‰ to 27 ‰ isotopic offset from ambient sulfate, suggestive of incomplete MSR and open sulfur cycling. Pyrite-sulfur fractionation decreases with increased reducible reactive iron in the sediment. In the absence of ferruginous coastal zones today affected by post-depositional sulfate fluxes, the current water column redox stratification in the post-mining Lake Medard is thought relevant for refining interpretations pertaining to the onset of widespread redox-stratified states across ancient nearshore depositional systems.
Abstract. In the aqueous oligotrophic ecosystem of a post-mining lake (Lake Medard, Czechia), reductive Fe(II) dissolution outpaces sulfide generation from microbial sulfate reduction (MSR), and ferruginous conditions occur without quantitative sulfate depletion. An isotopically constrained estimate of the rates of sulfate reduction (SRR) suggests that despite a high genetic potential, this respiration pathway is limited by the rather low amounts of metabolizable organic carbon. This points to substrate competition exerted by iron and nitrogen respiring prokaryotes. Yet, the microbial succession across the nitrogenous and ferruginous zones of the bottom water column also indicates sustained genetic potential for chemolithotrophic sulfur oxidation. Therefore, our isotopic SRR estimates could be rather portraying high rates of anoxic sulfide oxidation to sulfate, probably accompanied by microbially induced disproportionation of S intermediates. Near and at the anoxic sediment-water interface, vigorous sulfur cycling can be fuelled by ferric and manganic particulate matter and redeposited siderite stocks. Sulfur oxidation and disproportionation then appear to prevent substantial stabilization of iron monosulfides as pyrite but can enable the interstitial precipitation of small proportions of equant microcrystalline gypsum. This latter mineral isotopically fingerprints sulfur oxidation proceeding at near equilibrium with the ambient anoxic waters, whilst authigenic pyrite-sulfur displays a 38 to 27 ‰ isotopic offset from ambient sulfate, suggestive of incomplete MSR and likely reflective also of an open sulfur cycling system. Pyrite-sulfur fractionation decreases with increased reducible reactive iron in the sediment. In the absence of ferruginous coastal zones today, the current water column redox stratification in the post-mining Lake Medard has scientific value for (i) testing emerging hypotheses on how a few interlinked biogeochemical cycles operated in nearshore paleoenvironments during redox transitional states; and (ii) to acquire insight on how similar early diagenetic redox proxy signals developed in sediments affected by analogue transitional states in ancient water columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.