Very low birth weight (VLBW: ≤ 1500 g) individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT) and diffusion tensor imaging (DTI). Probabilistic tractography of motor pathways of the corticospinal tract (CST) and corpus callosum (CC) was performed. Fractional anisotropy (FA) was calculated in non-crossing (capsula interna in CST, body of CC) and crossing (centrum semiovale) fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS) was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within the VLBW group. In the TBSS analysis, the VLBW group had lower FA and higher mean diffusivity compared with controls in all major white matter tracts. The findings in this study may indicate that the associations between motor function and FA are caused by other tracts crossing the CST and CC, and/or by alterations in the periventricular white matter in the centrum semiovale. Some of the associations were in the opposite direction than hypothesized, thus higher FA does not always indicate better function. Furthermore, widespread white matter alterations in VLBW individuals persist into young adulthood.
Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.
Background Children born preterm with very low birthweight (VLBW) face long‐lasting neurodevelopmental challenges, where multidisciplinary assessments are warranted. The International Classification of Functioning, Disability and Health (ICF) provides a framework for understanding and conceptualising these outcomes. Objectives We aimed to review clinical and neuroimaging findings from birth to adulthood in a Norwegian cohort of individuals born preterm with VLBW (gestational age <37 weeks, birthweight ≤1500 g) within the framework of ICF. Data Sources We searched PubMed and Embase for articles reporting results of the Norwegian University of Science and Technology (NTNU) Low Birth Weight in a Lifetime Perspective study. Study Selection and Data Extraction We included original articles reporting proportions of adverse outcomes, mean group differences, risk factors or associations between outcomes. Data were extracted according to ICF's two‐level classification. Body functions and structures comprised outcomes of brain structures, cognition, mental health, vision, pain and physical health. Activities and participation comprised motor skills, general and social functioning, education, employment, and health‐related quality of life. Synthesis We performed a qualitative synthesis of included articles. Where mean (SD) was reported, we calculated group differences in SD units. Results Fifty‐eight publications were included. Within body functions and structures, increased prevalence of brain structure pathology, lower cognitive performance, mental health problems, visual and physical health impairments through childhood, adolescence and young adulthood were reported among preterm VLBW participants compared with controls. Within activities and participation, motor problems, lower general and social functioning, and lower academic attainment were found. Perinatal factors were associated with several outcomes, and longitudinal findings suggested persistent consequences of being born preterm with VLBW. Conclusions Being born preterm with VLBW has long‐term influences on body functions and structures, activities and participation. The ICF is appropriate for assessing general domains of functioning and guiding the management of individuals born preterm with VLBW.
Background Individuals born small for gestational age (SGA) have an increased risk of several adverse health outcomes, but their health-related quality of life (HRQoL) across young adulthood has yet to be studied. The main aim of this study was to investigate if being born SGA at term is associated with poor HRQoL at 32 years of age. A second aim was to explore longitudinal changes in HRQoL from age 20 to 32 years. Methods In the prospective NTNU Low Birth Weight in a Lifetime Perspective study, 56 participants born SGA and 68 non-SGA control participants completed the Short Form 36 Health Survey (SF-36) at age 32 years to assess HRQoL. The SF-36 was also administrated at age 20 and 28 years. Longitudinal changes in the eight SF-36 domains and the two component summaries from 20 to 32 years were analyzed by linear mixed models. In total, 82 adults born SGA and 98 controls participated at least once and were included in the longitudinal analyses. Results At age 32 years the participants born SGA scored 14.8 (95% CI 4.7 to 25.3) points lower in the SF-36 role-physical domain compared with the control group, i.e. more problems with work or other daily activities due to physical health problems. The longitudinal analyses showed significant group differences from 20 to 32 years in the role-emotional domain, and in the physical and mental component summaries. Among participants born SGA, the physical component summary decreased from age 20 to 28 years (-3.2, 95% CI -5.0 to -1.8), while the mental component summary (6.0, 95% CI 2.9 to 8.6) and role-emotional domain score (19.3, 95% CI 9.9 to 30.3) increased, but there were no further changes from 28 to 32 years. There were no longitudinal changes in the control group from 20 to 32 years. Conclusion Overall, individuals born SGA at term reported similar HRQoL at age 32 years compared with non-SGA controls. Self-perceived mental health improved during young adulthood among individuals born SGA, while self-perceived physical health deteriorated. The latter findings warrant further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.