Ferrocene and its derivatives constitute versatile and interesting scaffolds for the global chemical enterprise due to its multiple applications that range from biomedical to materials science. Ferrocenyl derivatives are the leading compounds in our research for the syntheses and characterization as well as their potential biological applications. Among them, our recent focus has been in ferrocenyl chalcones as a framework for further derivatization. The proposed modifications consist on the incorporation of heterocyclic moieties into the ferrocenyl chalcone core. This can be afforded either by introducing a heterocyclic aromatic moiety as a substituent or functionalizing the α-β unsaturated system. Another modification explored is the formation of ammonium or pyridinium salts to increase water solubility. Studied ferrocenyl chalcones exhibit remarkable stability, physical, and electrochemical properties. These factors have led the approaches for them to be precursors of biologically active compounds (cancer, bacteria, malaria, and neurobiological diseases). Moreover, other potential applications include molecular materials, redox-sensors, and polymers. Our goal in this mini review is to highlight the chemistry of ferrocene derivatives with particular prominence to those ferrocenyl chalcones studied in our laboratory and their applications. Moreover, we are providing a background on ferrocene, chalcones, and ferrocenyl chalcones, emphasizing the methodologies with preeminent yields.
In this Activity, students perform several solubility tests using common food items such as chocolate, chewing gum, water, sugar, and oil. From their observations during the Activity, students will initially classify the substances tested as soluble or insoluble. They will then use their understanding of the chemistry of solubility to classify the substances as polar or nonpolar. The chemical concepts reinforced by the Activity include solubility, “like dissolves like”, polar and nonpolar, and phases.
A novel series of ferrocenyl chalcone ammonium and pyridinium salt derivatives were synthesized in order to improve their solubility in aqueous media. Substituted ferrocenyl chalcones with amines and pyridines were synthesized using the base-catalyzed Claisen-Schmidt reaction, and their corresponding salts were prepared by a nucleophilic quaternization reaction at the nitrogen atom. Most of the synthesized ferrocenyl chalcone salts were soluble in water at room temperature. They were fully characterized by IR, NMR spectroscopy and HRMS spectrometry, and their electrochemistry was studied. The salt derivatives presented chemical reversibility, electrochemical quasi reversibility, and the slope of a plot of Log Ipc (or Ipa) versus Log v were almost 0.5 suggesting that their redox process was controlled by diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.