Nanobodies are antigen-binding, single variable domain proteins derived from naturally-occurring, heavy chain only antibodies. They are highly soluble, stable, and can be linked to build multi-specific formats. Several Nanobodies are currently in clinical development in different therapeutic areas, for both chronic and acute applications. For the former, prolonged exposure is achieved by half-life extending moieties that target endogenous albumin, while for the latter, non-half-life extended constructs are preferable. To demonstrate the general pharmacokinetic behavior of both formats, serum levels of seven intravenously administered Nanobodies were analyzed in cynomolgus monkeys, mice or rabbits. In monkeys, the total clearance of a monomeric irrelevant Nanobody was rapid (2.0 mL/(min*kg)) and approximated the species glomerular filtration rate, indirectly suggesting that the Nanobody was mainly eliminated via the kidneys. When linked to an anti-albumin Nanobody, a 376-fold decrease in clearance was observed, resulting in a terminal half-life of 4.9 days, corresponding to the expected species albumin half-life. Similar conclusions were drawn for (non-) half-life extended mono-, bi-and trimeric Nanobodies in mice or rabbits, suggesting that these kinetic principles apply across species. Applying this knowledge to species translation and study design is crucial for successful pre-clinical development of novel therapeutic Nanobody candidates.
SUMMARYLittle is known about hepatitis C virus (HCV) breakthrough during antiviral therapy, although it would help in understanding HCV resistance to current antiviral treatments. To analyse the implication of virological factors and the vigour of humoral immune responses in this phenomenon, we studied 9 chronic hepatitis C patients with a viral breakthrough during IFN/ribavirin combination therapy, as well as 5 responders and 5 non responders. The IRES and regions coding for the capsid protein, the PePHD domain of envelope glycoprotein E2 and the NS5A and 5B proteins were amplified by RT-PCR before treatment, before and during breakthrough, and after treatment. The major variant sequence was obtained by direct sequencing. The heterogeneity of quasispecies was studied by SSCP in all patients and sequencing after cloning in seven genotype 1b-infected patients. Humoral responses against HCV epitopes were also analysed. The major sequences of IRES, PePHD and NS5B remained stable during treatment, regardless of the treatment response. However, the capsid protein and the regions flanking PePHD showed sequence variations in breakthrough patients, although no specific mutation was identified. The variable V3 region of NS5A, but not the PKR-binding domain and the ISDR, seemed to be associated with differences in response to treatment. The analysis of HCV quasispecies revealed no characteristic pattern during treatment in breakthrough patients, whose HCV genome profiles looked most similar to that of non responders. The humoral response was similar between groups. In conclusion, viral breakthrough does not seem to be due to selection of resistant strains with signature mutations.
Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies.
Introduction: The interaction between RANK/RANKL is critical for the regulation of osteoclastogenesis and bone resorption. Inhibition of this interaction helps restore the balance between bone resorption and formation. ALX-0141, a novel biological agent (Nanobody) that specifically targets RANKL, was studied in a Phase I trial to assess the safety, tolerability, immunogenicity and PK after single injection. Methods: Forty-two healthy postmenopausal women (53-77 years, mean 66 years) were included in this study, which was approved by the local Ethical Committee. Participants received a single SC injection of ALX-0141 (n=31) at 6 dose levels, ranging from 0.003 to 1 mg/kg, or placebo (n=11). PK, PD and safety parameters were monitored for 3 months at the lowest dose level and for more than a year in the higher dose levels. Results: The safety analysis indicated that ALX-0141 was well tolerated. No serious adverse events related to ALX-0141 or dose-limiting toxicity occurred. The frequency of treatment emergent adverse events (TEAE) was similar in placebo-treated subjects (16 events in 7 subjects [64%]) and in subjects treated with ALX-0141 (93 events in 23 subjects [74%]). The most frequent TEAE were musculoskeletal and connective tissue disorders (n=27, reported by 14 subjects) and all TEAE were transient, of mild intensity, and did not result in any study withdrawals. ALX-0141 showed a favourable PK profile, triggering a prolonged PD response. Serum levels of the lead biomarker for bone resorption cross-linking telopeptide of type 1 collagen (CTx-1) decreased rapidly and remained suppressed for up to 390 days after a single SC administration of 1 mg/kg. Conclusions: The results from this Phase I trial indicate that ALX-0141 is a potent RANKL inhibitor that is well tolerated over a wide range of doses. This data supports the further development in bone-resorptive diseases with reduced BMD and increased fracture risk, such as in cancer-related bone diseases, osteoporosis and other disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.