Abstract:The Kara ore node is located within the Sretensk-Kara ore region of East Transbaikalia. The geological structure of this area is complex due to its location within the Mongol-Okhotsk suture, the zone wherein the Siberian and Mongolia-China continents collided into each other at the turn of the Early and Middle Jurassic. During the plate collision, intense magmatism was accompanied by the formation of focal-dome, dome-ring and other structures. The Kara ore node is controlled by the Ust-Kara focal dome-ring structure. The central part of latter is composed of KaraChacha granitoids from the Amudzhikan-Sretensk intrusive complex (J3-K1) with the system of subvolcanic and vein formations, including grorudites. It is suggested that gold mineralization in the study area is genetically related to grorudites; however, physical and chemical conditions for the formation of these alkaline rocks, their genesis and role in the hydrothermal gold-ore process still have not been sufficiently investigated. To this end, the authors of this paper have studied fluid inclusions (FI) in quartz from these rocks. It has been found that quartz porphyry phenocrysts in grorudite contain FI of diverse forms, the size of which ranges from 5 to 48 microns. Measured temperatures of ice melting (-2.5°C) and complete homogenization into liquid (350 °C) show that the concentration of salts in the fluid amounts to 4.2 wt % of eq. NaC, its density is 0.64 g/cm 3 , and the pressure is 1.6 kb. At LA-ICP-MS of individual FI, clear analytical signals were derived from Na and K. As, Mo, Sb, Cs, W, and Hg were traced in significant quantities. The Raman scanning showed the presence of N2 in the primary (substantially gaseous) FI, and CO2, N2, and CH4 in the primary-secondary FI.
analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
Eight silicate glasses were prepared by directly fusing and stirring 50‐100 g each of basalt, andesite, komatiite, peridotite, rhyolite, and quartz‐diorite. These are referred to as MPI‐DING glasses and were made for the purpose of providing reference materials for geochemical, in‐situ microanalytical work. Results from various analytical techniques indicate that individual glass fragments are well homogenised with respect to major and trace elements at the μm to mm scale. Heterogeneities due to quench crystallisation of olivine have been observed in small and limited areas of the two komatiitic glasses. In order to obtain concentration values for as many elements as possible, the glasses were analysed by a variety of bulk and microanalytical methods in a number of laboratories. The analytical uncertainties of most elements are estimated to be between 1% and 10%. From the analytical data, preliminary reference values for more than sixty elements were calculated. The analytical uncertainties of most elements are estimated to be between 1% and 10%.
The USGS reference glasses GSA‐1G, GSC‐1G, GSD‐1G, GSE‐1G, BCR‐2G, BHVO‐2G and BIR‐1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix‐matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g‐1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA‐ICP‐MS and two isotope dilution techniques using TIMS and ICP‐MS. EPMA and LA‐ICP‐MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1‐2%) and most trace elements (variations 1‐4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1‐5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.