Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases.
Wilms tumor is the most common renal malignancy of childhood. To identify common variants that confer susceptibility to Wilms tumor we conducted a genome-wide association study in 757 cases and 1,879 controls. We evaluated ten SNPs in regions significant at P<5×10−5 in two independent replication series from the UK (769 cases and 2,814 controls) and the US (719 cases and 1,037 controls). We identified clear significant associations at two loci, 2p24 (rs3755132, P=1.03×10−14 and rs807624, P=1.32×10−14) and 11q14 (rs790356, P=4.25 ×10−15). Both regions contain genes that are plausibly related to Wilms tumorigenesis. We also identified candidate signals at 5q14, 22q12 and Xp22.
PTCH1 and SUFU are both regulators of the sonic hedgehog signalling pathway. Germline inactivating mutations in both genes are associated with multisystem phenotypes including medulloblastoma. Somatic inactivating mutations in PTCH1 and SUFU each occur in approximately 10% of medulloblastomas. Recently, SUFU mutations were reported in familial medulloblastoma pedigrees without additional phenotypic features. We sought to further investigate the contribution of germline PTCH1 and SUFU mutations to familial and sporadic medulloblastoma. We performed full-gene mutational analysis of both PTCH1 and SUFU in three familial medulloblastoma pedigrees and 83 individuals with sporadic non-familial medulloblastoma. We identified no mutations in PTCH1 or SUFU in the three familial medulloblastoma pedigrees. We identified no PTCH1 mutations and two SUFU mutations that cause premature protein truncating in the series of sporadic non-familial medulloblastomas. The SUFU mutations were identified in two of the 16 individuals with desmoplastic medulloblastomas. These data indicate that familial medulloblastoma is a genetically heterogeneous disorder with at least one further susceptibility gene to be discovered. Furthermore, although both PTCH1 and SUFU play a key role in the sonic hedgehog signalling pathway, PTCH1 does not make an appreciable contribution to non-familial sporadic medulloblastoma, whereas inactivating germline mutations of SUFU cause ~2-3% of sporadic medulloblastomas and > 10% of desmoplastic medulloblastomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.