Aims Understanding fine‐grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine‐grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi‐natural) grasslands and natural grasslands are the richest vegetation type. The open‐access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high‐quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation‐plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.
Under natural conditions, plants compete for environmental resources, including by the release of allelopathic compounds with a various spectrum of activity. Therefore, the effect of aqueous extracts of cock's-foot Dactylis glomerata L. on germination and early growth phases and electrolyte leakages of a red clover Trifolium pratense L. was investigated. The 5, 10, and 15% of the aqueous extracts of cock's-foot separately from shoots and inflorescences were used in two type of treatments tested in parallel. In first treatment the red clover seeds were watered directly with the aqueous extracts by eight days of experiment time, in second the seeds were pretreated with extracts for 24, 48 and 72 h and next they were watered with distilled water during experiment time. The results showed that the germination capacity of red clover seeds decreased with increasing concentrations of cock's-foot aqueous extracts. Regardless of the duration of seed treatment with the extracts, the highest inhibition of germination was found when the 15% cock'sfoot shoot extracts was used. For red clover seedlings pretreated with extracts for 72 h, the highest and statistically significant differences in the growth were observed. With the increasing of concentration of cock's-foot extracts significant inhibition of the underground and aboveground organs growth were observed. The increase of fresh and dry masses of red clover seedlings varied depending on the duration of contact with the extracts and their concentrations. The electrolyte leakage, as compared to the control, increased with the concentration of extracts, regardless of types and duration of extracts. The obtained results clearly confirm that leaving biomass of cock's-foot on the field can lead to the release of phytotoxins that may inhibit germination and growth of red clover.
This study compared morphological characteristics and seed germinative capabilities of the metallophyte Arabidopsis arenosa grown at a copper mining heap with individuals of the same species grown at a reference site. We observed the height of the plant, the width of rosette leaves at ground level, the width and length of the lowest stem leaf, the number of seeds per silique, the below-ground biomass weight and the above-ground biomass weight. We found that the pH and the Eh of soil taken from the root sphere of A. arenosa were similar on both sites, and the pH ranged from 5.87 on the heap to 7.03 on the reference site. The measured morphological attributes and the number of seeds produced were significantly reduced (p < 0.01) in plants from the metalliferous site. The biggest difference was in leaf length, where plants from the heap were almost 2.5-times smaller. The mean germinative capacity of seeds ranged from 87% to 93%, and was not different between sites. The length of roots of germinated seeds from the heap (9.14 mm) was significantly longer than those from the reference site (8.27 mm). Results support the hypothesis of the influence of site conditions and heavy metals on the habitus of the plant and its development.
The reclamation of abandoned mining heaps rich in potentially toxic elements (PTEs) is critical for the environment. We carried out a laboratory experiment studying the effects of the addition of four natural sorbents (biochar, bentonite, chicken manure and organo-zeolitic substrate) to soils contaminated with PTEs, predominantly Cu, As and Sb, on the germination and growth of the autochthonous grasses Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis. The experiment used Petri dish tests with water extracts of contaminated soil and soil neutralised with the four sorbents. Standard indexes of the germination process were used (germination percentage, time required for 50% germination index, speed of emergence), and different values were found depending on the plant species and sorbent used. However, the percentage of seeds germinating was lower for each sorbent compared to the control (distilled water). The fresh mass values were positively stimulated by all sorbents. Electrolyte leakage was the highest in seedlings watered with an extract of untreated soil from the heap compared to extracts from treated soils and the control. This can be interpreted as eliminating the harmful effects of increased potentially toxic element (PTE) contents by sorbents, which can be useful in remediation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.