ScopeGABAA receptors are modulated by Sideritis extracts. The aim of this study was to identify single substances from Sideritis extracts responsible for GABAA receptor modulation.Methods and resultsSingle volatile substances identified by GC have been tested in two expression systems, Xenopus oocytes and human embryonic kidney cells. Some of these substances, especially carvacrol, were highly potent on GABAA receptors composed of α1β2 and α1β2γ2 subunits. All effects measured were independent from the presence of the γ2 subunit. As Sideritis extracts contain a high amount of terpenes, 13 terpenes with similar structure elements were tested in the same way. Following a prescreening on α1β2 GABAA receptors, a high-throughput method was used for identification of the most effective terpenoid substances on GABA-affinity of α1β2γ2 receptors expressed in transfected cell lines. Isopulegol, pinocarveol, verbenol, and myrtenol were the most potent modifiers of GABAA receptor function.ConclusionComparing the chemical structures, the action of terpenes on GABAA receptors is most probably due to the presence of hydroxyl groups and a bicyclic character of the substances tested. We propose an allosteric modulation independent from the γ2 subunit and similar to the action of alcohols and anesthetics.
Coffee shows distinct antimicrobial activity against several bacterial genera. The present study investigated molecular mechanisms and active ingredients mediating the antimicrobial effect of coffee. Depending on concentration, roasted, but not raw coffee brew inhibited the growth of Escherichia coli and Listeria innocua. Several coffee ingredients with known antibacterial properties were tested for their contribution to the observed effect. In natural concentration, caffeine, ferulic acid and a mixture of all test compounds showed very weak, but significant activity, whereas trigonelline, 5-(hydroxymethyl)furfural, chlorogenic acid, nicotinic acid, caffeic acid, and methylglyoxal were not active. Antimicrobial activity, however, was completely abolished by addition of catalase indicating that H(2)O(2) is a major antimicrobial coffee component. In accordance with this assumption, bacterial counts during 16 h of incubation were inversely related to the H(2)O(2) concentration in the incubation solution. Pure H(2)O(2) showed slightly weaker activity. The H(2)O(2) dependent antimicrobial activity of coffee could be mimicked by a reaction mixture of d-ribose and l-lysine (30 min 120 °C) indicating that H(2)O(2) is generated in the coffee brew by Maillard reaction products. Identification of H(2)O(2) as major antimicrobial coffee component is important to evaluate the application of coffee or coffee extracts as natural preservatives.
A competitive enzyme-linked immunosorbent assay (ELISA) was developed to quantify the amount of the preservative and potential allergen lysozyme in cheese using a commercially available monoclonal antibody against hen egg white lysozyme. The limit of detection for lysozyme in a cheese matrix amounted to 2.73 ng/mL, and the working range comprises 3.125-800 ng/mL. Intra- and interassay coefficients of variation were lower than 12%. Neither cross-reactivity with alpha-lactalbumin and human lysozyme nor unspecific interference with matrix components was observed. The recovery of lysozyme-spiked cheese ranged from 87.4 to 93.6% at four concentrations (50, 100, 200, and 400 mg/kg). The ELISA method was also compared to a high-performance liquid chromatography (HPLC) method, confirming the reliability and accuracy of the ELISA. A total of 21 commercially available cheese samples produced with and without lysozyme were analyzed with ELISA as well as HPLC. Both methods showed good agreement with a correlation index of R2=0.990.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.