The purpose of this study was to investigate the mechanism behind the high sensitivity of thymidine kinase 1 (TK1) to X-irradiation. The deoxythymidine triphosphate (dTTP) pool was studied in mouse ascites tumour cells 1-24 h after X-irradiation with 5 Gy. Irradiation changed the Michaelis-Menten kinetics of TK1 from linear to biphasic, showing a negative co-operativity. These changes were closely related to changes in the dTTP pool. Addition of dTTP to the cell extract of non-irradiated cells, or thymidine (dTdR) to the culture medium, resulted in changes very similar to the kinetics found in the irradiated cells. Addition of 5 cent-amino-5 cent-deoxythymidine (5 cent-AdTdR), a thymidine analogue that eliminated the inhibitory effect of dTTP on TK1 activity, completely abolished the irradiation-induced inhibition of TK1 activity. We suggest that the reduced TK1 activity is mainly due to an elevated intracellular concentration of dTTP.
The effect of radiation on TK is more complicated than would be expected from earlier results on bone marrow cells (Feinendegen et al. 1984, Int. J. Radiat. Biol. 45, 205). TK activity increased at 0.01 Gy and then decreased up to 1 Gy in mouse spleen. In contrast to the results for the spleen, an increase in activity at 0.1 Gy was seen in mouse thymus. The activity of dephosphorylated TK1 (TK1a) in both spleen and thymus was reduced to 50% after irradiation at 0.5-1 Gy. The degree of phosphorylation (TK1b/TK1a ratio) changed in spleen, but not in thymus. The activity of TK2 in mouse liver increased at 3 h after 5 Gy by about 60%. In mouse ascites tumour, a dose-independent (1-5 Gy) oscillating TK1 activity was found up to 24 h, especially for TK1a and TK1b. The amount of TK1 was unchanged up to 12 h, but decreased at 24 h. This suggests that the differences in the changes in the degree of phosphorylation of TK1 after irradiation among spleen, thymus and ascites tumour further underline the complexity of the response of TK1 activity to irradiation. The dramatic change in the activities of TK1a and TK1b may illustrate that both of them are more radiosensitive than TK-h, a variant with mixed TK1 and TK2 properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.