Gallic acid is a prevalent secondary plant metabolite distinguished as one of the most effective free-radical scavengers among phenolic acids. This compound is also known for its cytotoxic, anti-inflammatory, and antimicrobial activities. Bulk quantities of gallic acid are conventionally produced by acid hydrolysis of tannins, a costly and environmentally hazardous process. With the aim to develop more sustainable approaches, microbial bioproduction strategies have been attempted recently. To advance synthetic biology and metabolic engineering of microorganisms for gallic acid production, we characterize here a transcription factor-based inducible system PpGalR/P PP_RS13150 that responds to the extracellular gallic acid in a dose-dependent manner in Pseudomonas putida KT2440. Surprisingly, this compound does not mediate induction when PpGalR/P PP_RS13150 is used in non-native host background. We show that the activation of the inducible system requires gallate dioxygenase activity encoded by galA gene. The 4-oxalomesaconic acid, an intermediate of gallic acid-metabolism, is identified as the effector molecule that interacts with the transcription factor GalR mediating activation of gene expression. Introduction of galA gene along galR enables development of biosensors suitable for detection and monitoring of gallic acid extracellularly using non-native hosts such as E. coli and C. necator. Moreover, the P. putida-based biosensor’s applicability is demonstrated by detecting and measuring gallic acid in extracts of Camellia sinensis leaves. This study reports the strategy, which can be applied for developing gallic acid biosensors using bacterial species outside Pseudomonas genus.
Indole is a biologically active compound naturally occurring in plants and some bacteria. It is an important specialty chemical that is used as a precursor by the pharmaceutical and chemical industries, as well as in agriculture. Recently, indole has been identified as an important signaling molecule for bacteria in the mammalian gut. The regulation of indole biosynthesis has been studied in several bacterial species. However, this has been limited by the lack of in vivo tools suitable for indole-producing species identification and monitoring. The genetically encoded biosensors have been shown to be useful for real-time quantitative metabolite analysis. This paper describes the identification and characterization of the indole-inducible system PpTrpI/PPP_RS00425 from Pseudomonas putida KT2440. Indole whole-cell biosensors based on Escherichia coli and Cupriavidus necator strains are developed and validated. The specificity and dynamics of biosensors in response to indole and its structurally similar derivatives are investigated. The gene expression system PpTrpI/PPP_RS00425 is shown to be specifically induced up to 639.6-fold by indole, exhibiting a linear response in the concentration range from approximately 0.4 to 5 mM. The results of this study form the basis for the use of whole-cell biosensors in indole metabolism-relevant bacterial species screening and characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.