Rainfall is a major climate parameter whose variation in space and time influences activities in different weather sensitive sectors such as agriculture, transport, and energy among others. Therefore, accurately forecasting rainfall is of paramount importance to the development of these sectors. In this regard, this study sought to contribute to quantitative forecasting of rainfall over Eastern Uganda through assessing the Weather Research and Forecasting model's ability to simulate the intra-seasonal characteristics of the September to December rain season. These were: onset and cessation dates; wet days and lengths of the wet spells. The data used in the study included daily ground rainfall observations and lateral and boundary conditions data from the National Centers for Environmental Prediction (NCEP) final analysis at 1 0 horizontal resolution and at a temporal resolution of 6 hours for the entire study period were used to initialize the Weather Research and Forecasting (WRF) model. The study considered four weather synoptic weather stations namely; Jinja, Serere, Soroti and Tororo. The results show that the WRF model generally simulated fewer wet days at each station except for Tororo. Also, the WRF model simulated earlier onset and cessation dates of the rainfall season and overestimated the length of the wet spells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.