Vaccination plays an important role in large-scale commercial fish farming and has been a key reason for the success of salmon cultivation. In addition to salmon and trout, commercial vaccines are available for channel catfish, European seabass and seabream, Japanese amberjack and yellowtail, tilapia and Atlantic cod. In general, empirically developed vaccines based on inactivated bacterial pathogens have proven to be very efficacious in fish. Fewer commercially available viral vaccines and no parasite vaccines exist. Substantial efficacy data are available for new fish vaccines and advanced technology has been implemented. However, before such vaccines can be successfully commercialized, several hurdles have to be overcome regarding the production of cheap but effective antigens and adjuvants, while bearing in mind environmental and associated regulatory concerns (e.g., those that limit the use of live vaccines). Pharmaceutical companies have performed a considerable amount of research on fish vaccines, however, limited information is available in scientific publications. In addition, salmonids dominate both the literature and commercial focus, despite their relatively small contribution to the total volume of farmed fish in the world. This review provides an overview of the fish vaccines that are currently commercially available and some viewpoints on how the field is likely to evolve in the near future.
An outbreak of nodavirus infection in turbot larvae is described with respect to histopathology, immunohistochemistry, cell culture cultivation, RT-PCR amplification and sequence analysis of the capsid protein gene RNA2. Affected turbot developed classical signs of viral encephalopathy and retinopathy (VER) with abnormal swimming behaviour and high mortality levels. In the acute stage of infection, light microscopy revealed vacuolation of the central nervous system (CNS), with positive immunohistochemical staining for nodavirus. Later in the infection, CNS lesions appeared more chronic and contained clusters of cells immunopositive for nodavirus. Bacterial overgrowth in the intestines of the fish may have provoked or influenced the course of the nodavirus infection. We were unable to propagate the virus in cell culture. While RT-PCR using primers designed to detect Atlantic halibut nodavirus gave negative results, further testing with primers complementary to a more conserved region of RNA2 resulted in amplification of a product of the expected size. The entire RNA2 segment was cloned and sequenced. Sequence alignment showed that the turbot nodavirus (TNV) was different from previously described fish nodaviruses. In addition, phylogenetic analysis based on an 823 nt region of the sequence indicated that TNV clustered outside the four established fish nodavirus genotypes, suggesting a fifth genotype within the betanodaviruses.
The Nodaviridae are divided into the alphanodavirus genus, which infects insects, and the betanodavirus genus, which infects fishes. Betanodaviruses are the causative agent of viral encephalopathy and retinopathy (VER) in a number of cultivated marine fish species. The Nodaviridae are small non-enveloped RNA viruses that contain a genome consisting of 2 single-stranded positivesense RNA segments: RNA1 (3.1 kb), which encodes the viral part of the RNA-dependent RNA polymerase (RdRp); and RNA2 (1.4 kb), which encodes the capsid protein. In addition to RNA1 and RNA2, a subgenomic transcript of RNA1, RNA3, is present in infected cells. We have cloned and sequenced RNA1 from the Atlantic halibut Hippoglossus hippoglossus nodavirus (AHNV), and for the first time, the sequence of a betanodaviral subgenomic RNA3 has been determined. AHNV RNA1 was 3100 nucleotides in length and contained a main open reading frame encoding a polypeptide of 981 amino acids. Conservative motifs for RdRp were found in the deduced amino acid sequence. RNA3 was 371 nucleotides in length, and contained an open reading frame encoding a peptide of 75 amino acids corresponding to a hypothetical B2 protein, although sequence alignments with the alphanodavirus B2 proteins showed only marginal similarities. AHNV RNA replication in the fish cell-line SSN-1 (derived from striped snakehead) was analysed by Northern blot analysis, which indicated that RNA3 was synthesised in large amounts (compared to RNA1) at an early point in time post-infection.KEY WORDS: Fish nodavirus · RNA-dependent RNA polymerase · RdRp · RNA1 · Subgenomic RNA 3 Resale or republication not permitted without written consent of the publisherDis Aquat Org 58: [117][118][119][120][121][122][123][124][125] 2004 2003). B1 is translated in the same reading frame as protein A, while B2 is translated in a +1 reading frame. PaV RNA3 has the coding potential of B2 and a second, smaller open reading frame (ORF) corresponding to the C-terminal region of protein A (Johnson et al. 2000), whereas the B1 ORF is absent from BoV RNA3 (Gene Bank Accession No. AF329080;Harper 1994). The function of protein B1 is not known, while the function of the FHV B2 protein has recently been identified as a potent RNA-silencing inhibitor that renders infected plant cells or Drosophila spp. cells less resistant to the virus (Li et al. 2002).Independent of its protein encoding potential, it has been suggested that RNA3 may act as a transactivator in the replication of RNA2 (Eckerle & Ball 2002). In contrast, RNA3 synthesis is suppressed by the replication of RNA2 (Zhong & Rueckert 1993). RNA3 has not been characterized in fish nodaviruses, although Delsert et al. (1997) detected an RNA segment of 0.4 kb in sea bass Dicentrarchus labrax larvae infected with D. labrax encephalitis virus (Dl EV). Iwamoto et al. (2001) also detected a faster migrating RNA (0.4 kb) from fish cells (E-11 cell line, a cloned version of SSN-1) that had been transfected with in vitro transcribed striped-jack nervous necrosis ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.