The KCNN4 potassium-ion channel has been reported to play an important role in regulating antigen-induced T cell effector functions in vitro. This study presents the first evidence that a selective KCNN4 blocker, TRAM-34, confers protection against experimental autoimmune encephalomyelitis (EAE) in the mouse model. Treatment with the KCNN4 blocker did not prevent infiltration of T cells in the spinal cord, but resulted in the reduction of both the protein and the message levels of TNF-a and IFN-c as well as the message levels of several other pro-inflammatory molecules in the spinal cord. Plasma concentrations of TRAM-34 within a 24-h period were between the in vitro IC 50 and IC 90 values for the KCNN4 channel. The effect of TRAM-34 was reversible, as indicated by the development of clinical EAE symptoms within 48 h after withdrawal of treatment. In summary, our data support the idea that KCNN4 channels play a critical role in the immune response during the development of MOG-induced EAE in C57BL/6 mice.See accompanying Commentary: http://dx
Caco-2 cells offer a means to rapidly screen permeability of drug candidates, allowing pharmaceutical companies to eliminate candidates unable to cross the intestinal barrier early in the discovery process. This screening process is typically performed by conventional liquid chromatography/tandem mass spectrometry (LC/MS/MS), which can require time-consuming method development. An alternative to LC/MS/MS, automated nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS), is introduced. This novel approach requires an off-line ZipTip desalting step followed by automated nanoESI-MS/MS, using the NanoMate 100 and ESI Chip. In addition to reduced method development time, automated nanoESI-MS/MS also offers no carry-over between samples, low sample consumption, and ease-of-use as compared with conventional pulled-capillary nanoelectrospray. Furthermore, the infusion system described has the potential to be high-throughput. A comparison of Caco-2 samples analyzed both by LC/MS/MS and by automated nanoESI-MS/MS is presented. The permeability and recovery data of the two compounds analyzed in this study obtained from conventional LC/MS/MS and by automated nanoESI-MS/MS were in excellent agreement.
Cyclic hydroxyamidines were designed and validated as isosteric replacements of the amide functionality. Compounds with these structural motifs were found to be metabolically stable and to possess highly desirable pharmacokinetic profiles. These designs were applied in the identification of γ-secretase modulators leading to highly efficacious agents for reduction of central nervous system Aβ(42) in various animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.